Math, asked by keerthanaharini, 1 month ago

If the area of the triangle formed by the vertices (-3,5)(5,-2) and (5,a).(take in order) 32 sq units. find the value of a​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that

The vertices of triangle is given as ( - 3, 5 ), ( 5, - 2 ) and ( 5, a )

and Area of triangle = 32 square units.

We know, area of triangle is given by

\sf \ Area =\dfrac{1}{2}\bigg| x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\bigg |

Now, we have

  • • x₁ = - 3

  • • x₂ = 5

  • • x₃ = 5

  • • y₁ = 5

  • • y₂ = - 2

  • • y₃ = a

And

  • Area = 32

So, on substituting all these values in above formula, we get

\rm :\longmapsto\:\sf 32 =\dfrac{1}{2}\bigg| - 3( - 2 - a) + 5(a - 5) + 5(5 + 2)\bigg |

\rm :\longmapsto\:\sf 64 =\bigg| 6 + 3a + 5a - 25 + 25 + 10\bigg |

\rm :\longmapsto\:\sf 64 =\bigg| 16 + 8a\bigg |

\rm :\longmapsto\:16 + 8a =  \:  \pm \: 64

\rm :\longmapsto\:16 + 8a =   64 \:  \: or \:  \: 16 + 8a =  - 64

\rm :\longmapsto\:8a =   64 - 16\:  \: or \:  \:8a =  - 64 - 16

\rm :\longmapsto\:8a =48\:  \: or \:  \:8a =  -80

\bf\implies \:a =  6 \:  \: or \:  \: a =  -  \: 10

Additional Information :-

1. Distance Formula :-

{\underline{\boxed{\frak{\quad Distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \quad}}}}

2. Section Formula :-

{\underline{\boxed{\frak{\quad \Big(x, y \Big) = \Bigg(\dfrac{mx_2 + nx_1}{m + n},  \dfrac{my_2 + ny_1}{m + n}\Bigg) \quad}}}}

3. Midpoint Formula :-

{\underline{\boxed{\frak{\quad (x, \: y) \:  =  \: \bigg(\dfrac{x_1 + x_2}{2} \; ,\; \dfrac{y_1 + y_2}{2} \bigg)\quad}}}}

Similar questions