If the area of the triangle formed by the vertices z, iz and z+iz is 50 square units, then find the value of |z|
Anonymous:
___k off
Answers
Answered by
13
Answer:
the value of |z| = 10
Step-by-step explanation:
If the area of the triangle formed by the vertices z, iz and z+iz is 50 square units, then find the value of |z|
Length of three sides
z & iz = √(z-0)² + (0-z)² = |z|√2
z & z + iz = √(z-z)² + (0-z)² = |z|
iz & z + iz = √(0-z)² + (z-z)² = |z|
are |z|√2 , |z| & |z|
s = (|z| + |z| + |z|√2)/2
s = |z| + |z|/√2
Area of triangle using hero formula
=√( |z| + |z|/√2)( |z| + |z|/√2 -z)( |z| + |z|/√2 -z)( |z| + |z|/√2 - |z|√2)
=√( |z| + |z|/√2)( |z|/√2)( |z|/√2)( |z| - |z|/√2)
= √(|z|² - |z|²/2)(|z|²/2)
= √(|z|²/2)(|z|²/2)
=|z|²/2
Area of triangle = 50 sq units
|z|²/2 = 50
=> |z|² = 100
=> |z| = 10
the value of |z| = 10
Similar questions