Math, asked by 3395, 1 month ago

If the area of triangle is 12 sq. Units with vertices (a, −3), (3, a) (−1, 5) find ‘a’.

(a) – 1,2 (b) 1,3 (c) 2,1 (d) 3,1​

Answers

Answered by shadowsabers03
65

If the area of a triangle with vertices (x_1,\ y_1),\ (x_2,\ y_2) and (x_3,\ y_3) is A sq. units, then,

  • \dfrac{1}{2}\left|\begin{array}{cc}x_1-x_2&y_1-y_2\\x_2-x_3&y_2-y_3\end{array}\right|=\pm A

In the question,

  • (x_1,\ y_1)=(a,\ -3)
  • (x_2,\ y_2)=(3,\ a)
  • (x_3,\ y_3)=(-1,\ 5)
  • A=12

Then,

\longrightarrow\dfrac{1}{2}\left|\begin{array}{cc}a-3&-3-a\\4&a-5\end{array}\right|=\pm12

\longrightarrow\left|\begin{array}{cc}a-3&-(a+3)\\4&a-5\end{array}\right|=\pm24

\longrightarrow(a-3)(a-5)+4(a+3)=\pm24

\longrightarrow a^2-8a+15+4a+12=\pm24

\longrightarrow a^2-4a+27=\pm24

Take,

\longrightarrow a^2-4a+27=24

\longrightarrow a^2-4a+3=0

\longrightarrow(a-1)(a-3)=0

\longrightarrow a\in\{1,\ 3\}

Take,

\longrightarrow a^2-4a+27=-24

\longrightarrow a^2-4a+51=0

The roots of this quadratic equation are not real since D < 0.

Hence the possible values of a are 1 and 3.

Answered by Anonymous
42

Given :-

Area = 12 sq. units

vertices (a, −3), (3, a) (−1, 5)

Solution :-

We know that

\sf Area_{\triangle}=\dfrac{1}{2}\left[\begin{array}{ccc}x_1&amp;y_1&amp;1\\x_2&amp;y_2&amp;1\\x_3&amp;y_3&amp;1}\end{array}\right]

\sf 12=\dfrac{1}{2}\left[\begin{array}{ccc}a&amp;-3&amp;1\\3&amp;a&amp;1\\ -1&amp;5&amp;1}\end{array}\right]

\sf 12\times 2=\left[\begin{array}{ccc}a&amp;-3&amp;1\\3&amp;a&amp;1\\ -1&amp;5&amp;1}\end{array}\right]

\sf 24=\left[\begin{array}{ccc}a&amp;-3&amp;1\\3&amp;a&amp;1\\ -1&amp;5&amp;1}\end{array}\right]

\sf 24=(a-3)(a-5)+4(a+3)

\sf 24 = (a-3)(a-5)+4a+12

\sf 24= a^2 - (8a - 15) + 4a+12

\sf 24 = a^2 - 8a+15+4a+12

\sf 24 = a^2- (8a - 4a)+(15+12)

\sf 24 = a^2+4a+27

\sf 27-24=a^2-4a

\sf 3= a^2-4a

\sf a =3 \;or \;a= 1

Similar questions