Math, asked by vishavjasrotia893, 7 months ago

If the area of triangle with vertices (3,2) , (-1,4) and (6,k) is 7 sq. units then find the smallest possible value of k ?

Answers

Answered by sonisiddharth751
3

given that :-

  • vertices of triangle :-
  1. A(-1,4)
  2. B(3,2)
  3. C(6,k)
  • area of triangle = 7 unit².

To find :-

  • smallest possible value of k .

Formula used :-

area of triangle = \sf \dfrac{1}{2}   \bigg[ x_1( y_2 -  y_3) + x_2 (y_3 - y_1) + x_3 (y_1 -  y_2 )\bigg]

Solution :-

area of triangle = \sf \dfrac{1}{2}   \bigg[ x_1( y_2 -  y_3) + x_2 (y_3 - y_1) + x_3 (y_1 -  y_2 )\bigg]

 \sf  \blue  \implies\dfrac{1}{2}   \bigg[  - 1( 2 -  k) + 3 (k -4) + 6 (4-  2 )\bigg] \\  \\  \sf  \blue  \implies\dfrac{1}{2}  \bigg[  - 2 + k + 3k - 12 + 12\bigg]  \\  \\ \sf  \blue  \implies\dfrac{1}{2}  \bigg[  - 2 + k + 3k \cancel {- 12} \:  \: \cancel{ + 12}\bigg]  \\  \\ \sf  \blue  \implies\dfrac{1}{2}  \times 4k - 2 \\  \\ \sf  \blue  \implies4k = 16 \\  \\ \sf  \blue  \implies \: k =  \dfrac{16}{4}  \\  \\ \bf  \blue  \implies  \fbox{ \bf \: k = 4}

therefore the possible smallest value of k is 4

Similar questions