Math, asked by chaudharymehak2800, 6 hours ago

if the areas of two circles are in the ratio 4 ratio 9 then the ratio of the perimeter of the semicircle is​

Answers

Answered by vishwakarmaanushka42
1

Answer:

I hope this is the right answer

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

  • Radius of first circle be x units

  • Radius of second circle be y units

We know that

Area of circle of radius 'r' is given by

 \red{\rm :\longmapsto\:\boxed{\tt{  \:  \: Area_{Circle} \:  =  \: \pi \:  {r}^{2}  \:  \: }}}

So, According to statement

\rm :\longmapsto\:Area_{first \: Circle} : Area_{second \: Circle} = 4 : 9

\rm :\longmapsto\:\dfrac{Area_{first \: Circle}}{Area_{second \: Circle}}  = \dfrac{4}{9}

\rm :\longmapsto\:\dfrac{\pi \:  {x}^{2} }{\pi \:  {y}^{2} }  = \dfrac{4}{9}

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {y}^{2} }  = \dfrac{ {2}^{2} }{ {3}^{2} }

\bf :\longmapsto\:\dfrac{x}{y}  = \dfrac{2}{3}  -  -  -  - (1)

Now, we know that

Perimeter of a circle of radius 'r' is given by

\rm :\longmapsto\:\boxed{\tt{  \:  \: Perimeter_{Circle} \:  =  \: 2 \: \pi \: r \:  \: }}

So,

\rm :\longmapsto\:Perimeter_{first \: Circle} : Perimeter_{second \: Circle}

\rm \:  =  \: \dfrac{Perimeter_{first \: Circle}}{Perimeter_{second \: Circle}}

\rm \:  =  \: \dfrac{2 \: \pi \: x}{2 \: \pi \: y}

\rm \:  =  \: \dfrac{ \: x}{ \: y}

\rm \:  =  \: \dfrac{ \: 2 \: }{ \: 3 \: }

\rm \:  =  \: 2 : 3

Hence,

 \red{\boxed{\tt{ Perimeter_{first \: Circle} : Perimeter_{second \: Circle} = 2 : 3 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Similar questions