Math, asked by pavs68, 11 months ago

. If the arithmetic mean between two
numbers is 64 and the geometric mean
between them is 16, the harmonic mean
between them is
a) 64 b) 4 c) 16 d) 40

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\textsf{Arithmetic mean=64}

\textsf{Geometric mean=16}

\underline{\textbf{To find:}}

\textsf{Harmonic mean}

\underline{\textbf{Solution:}}

\underline{\textsf{Relation between A.M, G.M and H.M:}}

\boxed{\mathsf{(G.M)^2=A.M{\times}H.M}}

\implies\mathsf{(16)^2=64{\times}H.M}

\implies\mathsf{256=64{\times}H.M}

\implies\mathsf{H.M=\dfrac{256}{64}}

\implies\boxed{\mathsf{H.M=4}}

\underline{\textbf{Answer:}}

\mathsf{Option\;(b)\;is\;correct}

\underline{\textbf{Find more:}}

Answered by SharadSangha
0

Given:

Arithmetic mean = 64

Geometric mean = 16

To find:

Harmonic mean =?

Stepwise solution:

  • The different types of mathematical and statistical tools are used for calculating the average of given numbers.
  • The harmonic mean of two numbers is calculated from the given relation between arithmetic mean, geometric mean, and harmonic mean.

      ⇒ GM² = AM x HM

  • On rearranging terms we get:

      ⇒HM = \frac{GM^{2} }{AM}

       where, HM = Harmonic mean

       GM= Geometric mean

       AM= Arithmetic mean

      ⇒HM = \frac{16^{2} }{64}

      ⇒HM= \frac{256}{64}

      ⇒HM = 4

Hence, the correct answer for the harmonic mean is 4 (option b).

Similar questions