Math, asked by ShubhiJangid, 5 months ago

If the arithmetic mean of x, x+2, x+5, x+9 and x + 10 is 10, then find x...

Plz tell ASAP​

Answers

Answered by ItzFranklinRahul
4

 \frac{(x) +  (x+2) +  (x+5) +  (x+9 ) +  (x + 10)}{5}  = 10//= >\frac{(x) +  (x+2) +  (x+5) +  (x+9 ) +  (x + 10)}{5}  = 10 \\  \\  =  >   \frac{5x + 26}{5}  = 10 \\  \\  =  > 5x + 26 = 50 \\  \\  =  > 5x = 24 \\  \\  =  > x =  \frac{24}{5}  \\  \\  =  > x = 4.8

Here I have divides whole expression by 5 because there are total 5 terms here..

Now solve for x, you will get the answer...

Answered by IdyllicAurora
33

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the Concept of Mean of the numbers has been used. We know that Arithmetic Mean is the ratio of sum of the terms by number of terms. Using this, firstly we can apply the values in the equation and then find the answer.

Let's do it !!

____________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{Arithmetic\;Mean\;=\;\bf{\dfrac{Sum\;of\;Terms}{Number\;of\;Terms}}}}}

____________________________________________

Solution :-

Given,

» Arithmetic Mean of the terms = A.M. = 10

» First Term = a₁ = x

» Second Term = a₂ = x + 2

» Third Term = a₃ = x + 5

» Fourth Term = a₄ = x + 9

» Fifth Term = a₅ = x + 10

» Number of Terms = n = 5

Now using the formula of Arithmetic Mean, we get,

\\\;\displaystyle{\sf{:\rightarrow\;\;Arithmetic\;Mean\;=\;\bf{\gray{\dfrac{Sum\;of\;Terms}{Number\;of\;Terms}}}}}

\\\;\displaystyle{\sf{:\Longrightarrow\;\;A.\:M.\;=\;\bf{\dfrac{\blue{a_{1}\;+\;a_{2}\;+\;a_{3}\;+\;a_{4}\;+\;a_{5}}}{\orange{5}}}}}

By applying values, we get,

\\\;\displaystyle{\sf{:\Longrightarrow\;\;10\;=\;\bf{\dfrac{x\:+\:(x\:+\:2)\:+\:(x\:+\:5)\:+\:(x\:+\:9)\:+\:(x\:+\:10)}{5}}}}

\\\;\displaystyle{\sf{:\Longrightarrow\;\;10\;=\;\bf{\dfrac{x\:+\:x\:+\:2\:+\:x\:+\:5\:+\:x\:+\:9\:+\:x\:+\:10}{5}}}}

\\\;\displaystyle{\sf{:\Longrightarrow\;\;10\;=\;\bf{\dfrac{5x\;+\;26}{5}}}}

\\\;\displaystyle{\sf{:\Longrightarrow\;\;5x\;+\;26\;=\;\bf{5\;\times\;10}}}

\\\;\displaystyle{\sf{:\Longrightarrow\;\;5x\;+\;26\;=\;\bf{50}}}

\\\;\displaystyle{\sf{:\Longrightarrow\;\;5x\;=\;\bf{50\;-\;26}}}

\\\;\displaystyle{\sf{:\Longrightarrow\;\;5x\;=\;\bf{24}}}

\\\;\displaystyle{\sf{:\Longrightarrow\;\;x\;=\;\bf{\dfrac{24}{5}}}}

\\\;\displaystyle{\bf{:\Longrightarrow\;\;x\;=\;\bf{\red{4.8}}}}

\\\;\underline{\boxed{\tt{Hence,\;\;x\;\;=\;\bf{\purple{4.8}}}}}

____________________________________________

Verification :-

In order to verify our answer, we simply need to apply the value we got into the equation. Then,

\\\;\tt{:\leadsto\;\;Arithmetic\;Mean\;=\;\dfrac{Sum\;of\;Terms}{Number\;of\;Terms}}

\\\;\tt{:\leadsto\;\;A.\:M.\;=\;\dfrac{a_{1}\;+\;a_{2}\;+\;a_{3}\;+\;a_{4}\;+\;a_{5}}{5}}

\\\;\tt{:\leadsto\;\;\dfrac{x\:+\:x\:+\:2\:+\:x\:+\:5\:+\:x\:+\:9\:+\:x\:+\:10}{5}\;=\;A.M.}

\\\;\tt{:\leadsto\;\;\dfrac{4.8\:+\:4.8\:+\:2\:+\:4.8\:+\:5\:+\:4.8\:+\:9\:+\:4.8\:+\:10}{5}\;=\;A.M.}

\\\;\tt{:\leadsto\;\;\dfrac{50}{5}\;=\;A.M.}

\\\;\tt{\green{:\leadsto\;\;10\;=\;A.M.}}

And, we know that given A.M. = 10.

This means our answer is correct.

Hence, Verified.

____________________________________________

More Formulas to know :-

\\\;\sf{\mapsto\;\;Geometric\;Mean\;=\;\sqrt{ab}}

\\\;\sf{\mapsto\;\;Harmonic\;Mean\;=\;\dfrac{n}{\bigg(\dfrac{1}{x_{1}}\bigg)\;+\;\bigg(\dfrac{1}{x_{2}}\bigg)\;+\;\bigg(\dfrac{1}{x_{3}}\bigg)\;+\;.....\;+\;\bigg(\dfrac{1}{x_{n}}\bigg)}}

Similar questions