Math, asked by dugeshsingh20, 5 months ago

if the arthimetic mean of x,x+3,x+6,x+9 and x+12 is 10 , then x=?​

Answers

Answered by singhamarjeet6201
1

Step-by-step explanation:

x+x+3+x+6+x+9+x+12/5=10

5x+30=50

5x=50-30

5x=20

x=4

Answered by Anonymous
3

If the arthimetic mean of x, x+3, x+6, x+9 and x+12 is 10, then find the value of x.

Solution:

 \implies \sf   \dfrac{x +  (x+3) + (x+6) + (x+9 )+ (x+12) }{5}  = 10

 \implies \sf   \dfrac{x +  x+3 + x+6 + x+9 + x+12 }{5}  = 10

 \implies\sf   \dfrac{5x +30  }{5}  = 10

 \implies\sf   \dfrac{5x +30  }{5}  = 10

 \implies\sf   5x +30    = 10 \times 5

\implies\sf   5x +30    =50

\implies\sf   5x     =50 - 30

\implies\sf   5x     =20

\implies\sf   x     = \dfrac{20}{5}

\implies\sf   x     = \dfrac{ \cancel{{20}}^{4} }{ \cancel5}

\implies\sf   x     =4

The value of x =  \green{ \underline{ \boxed{ \sf{4}}}}

Assimilate:

The Arithmetic average of a number of observation or items is called the mean.

If there are n observations are items \sf x_1, \:x_2, \:x_3, \:x_4, \:........, \: x_n, \: then

  \gray{\underline{ \boxed{ \sf{Mean =  \dfrac{ Sum \: of \: all \: observations \: are \: items}{Total \: number \:of \:observations\: are\: items} }}}}

 \sf{ Mean =  \dfrac{x_1, \:x_2, \:x_3, \:x_4, \:........, \: x_n, \:}{n} }

 \sf{Mean = \dfrac{\Sigma x_i}{n} }

Where the Greek letter sigma ( Σ ) represents the term total sum of all the terms.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions