Math, asked by rahulshergill82, 4 months ago

If the average of six consecutive even numbers is 25, the difference between the largest and smallest

number is:-

(1) 8 (2) 10 (3) 12 (4) 14​

Attachments:

Answers

Answered by ITZBFF
82

\mathsf\blue{Option \: B}

\mathsf{}

Explaination

\mathsf{}

\mathsf \red{let \: the \: even \: consecutive \: numbers \: be \::  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \\ \mathsf{(n + 1),(n + 3),(n + 5),(n + 7),(n  + 9),(n + 11)} \\  \\ \mathsf \red{Given \: the \: average \: of \: these \: numers \: is \: 25 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\   \boxed{\mathsf \blue{Average \:  =  \frac{sum \: of \: observations}{number \: of \: observations}} } \\  \\ \mathsf{ \frac{n + 1 + n + 3 + n + 5 + n + 7 + n  + 9 + n + 11}{6}  = 25} \\  \\ \mathsf{ \frac{6n + 36}{6}  = 25} \\  \\  \mathsf{ \frac{6(n + 6)}{6} = 25 } \\  \\  \mathsf{n + 6 = 25} \\  \\  \mathsf{n = 25 - 6 = 19} \\ \\   \boxed{ \mathsf{n \:  =  \: 19}} \\  \\  \mathsf \red{the \: numbers \: were \:: \: 20 ,22,24,26,28,30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: } \\  \\  \mathsf{largest \: number \:  = 30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  } \\  \\  \mathsf{smallest \: number \:  = 20\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: } \\  \\  \mathsf \red{difference \: between \: largest \: and \: smallest \:: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }  \\   \boxed{\mathsf{30 - 20 \:  =  \: 10}}

\mathsf{}

{\sf{\fcolorbox{black}{pink}{© \: ITZBFF}}}

Similar questions