Math, asked by atlapavanreddy9392, 2 months ago


If the base of a right-angled triangle is 12
times the reciprocal of its height, then
determine its area.
Ops: A.
4 sq. units
B
B.
6 sq. units
C.
5 sq. units
D.
3 sq. units​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\textsf{Base of a right angled triangle is 12 times the}

\textsf{reciprocal of its height}

\textbf{To find:}

\textsf{Area of the triangle}

\textbf{Solution:}

\textsf{Let the hieght of the triangle be 'x'}

\mathsf{Then,}

\mathsf{Base=12{\times}\dfrac{1}{x}}

\mathsf{Area\;of\;the\;triangle}

\mathsf{=\dfrac{1}{2}{\times}Base{\times}Height}

\mathsf{=\dfrac{1}{2}{\times}\dfrac{12}{x}{\times}x}

\mathsf{=\dfrac{1}{2}{\times}12}

\mathsf{=6\;square\;units}

\textbf{Answer:}

\mathsf{Correct\;option\;is\;(B)}

\textbf{Find more:}

Find the area of the triangle whose vertices are (-2,1),(3,1),(2,-3)​

https://brainly.in/question/14905272

Similar questions