Math, asked by singhvibhavy, 6 months ago

If the base of a right angled triangle is 6 units and the hypotenuse is 10 units, find its area

Answers

Answered by Anonymous
19

Given :

  • Base of the triangle = 6 units

  • Hypotenuse of the triangle = 10 units

To Find :

The area of the triangle .

Solution :

To find the area of the triangle first we need to find the height of the triangle.

We can find the height of the triangle by using the Pythagoras theorem .

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Pythagoras theorem :

\underline{\bf{H^{2} = P^{2} + B^{2}}}

Where :-

  • H = Hypotenuse
  • P = Height
  • B = Base

Now, using the formula and substituting the values in it, we get :

Let the height of the triangle be x units.

:\implies \bf{H^{2} = P^{2} + B^{2}} \\ \\ \\

:\implies \bf{10^{2} = x^{2} + 6^{2}} \\ \\ \\

:\implies \bf{10^{2} - 6^{2} = x^{2}} \\ \\ \\

:\implies \bf{\sqrt{10^{2} - 6^{2}} = x} \\ \\ \\

:\implies \bf{\sqrt{100 - 36} = x} \\ \\ \\

:\implies \bf{\sqrt{64} = x} \\ \\ \\

:\implies \bf{8 = x} \\ \\ \\

\therefore \bf{Height = 8\:units} \\ \\

Hence, the height of the triangle is 8 units.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀Area of the triangle :

We know the formula for area of a triangle :-

\underline{\bf{A = \sqrt{s(s - a)(s - b)(s - c)}}}

Where :-

  • A = Area of the triangle
  • s = Semi-perimeter
  • a , b and c = Side of the triangle

Semi-perimeter = \rm{\dfrac{a + b + c}{2}}

Here , Semi-perimeter =

:\implies \rm{s = \dfrac{a + b + c}{2}} \\ \\ \\

:\implies \rm{s = \dfrac{6 + 8 + 10}{2}} \\ \\ \\

:\implies \rm{s = \dfrac{24}{2}} \\ \\ \\

:\implies \rm{s = 12\:units} \\ \\

Hence, the semi-perimeter is 12 units.

Now , Using the formula and substituting the values in it , we get :

:\implies \bf{A = \sqrt{s(s - a)(s - b)(s - c)}} \\ \\ \\

:\implies \bf{A = \sqrt{12(12 - 6)(12 - 8)(12 - 10)}} \\ \\ \\

:\implies \bf{A = \sqrt{12 \times 6 \times 4 \times 2}} \\ \\ \\

:\implies \bf{A = \sqrt{12 \times 48}} \\ \\ \\

:\implies \bf{A = \sqrt{576}} \\ \\ \\

:\implies \bf{A = 24} \\ \\ \\

\therefore \bf{Area = 24\:unit^{2}} \\ \\ \\

Hence, the area of the triangle is 24 unit².

Answered by Anonymous
29

 \pink{\large{\underline{\underline{ \rm{Given: }}}}}

◍ Base of a right angle triangle = 6 units

◍ Hypotenuse of a right angle triangle = 10 units

 \pink{\large{\underline{\underline{ \rm{To \: Find: }}}}}

◉ Area of Triangle.

 \pink{\large{\underline{\underline{ \rm{Solution: }}}}}

Let,

◎ ABC be the right angle triangle.

 \sf{ \angle{B = 90 \degree}}

◎ BC i.e., base = 6 units

◎ AC i.e., hypotenuse = 10 units

 \sf{ \blue{How \: to \: solve?}}

For finding the area of triangle first we have to find AB i.e., height and then by using simple formula of area of triangle, we will find the area of a right angled triangle.

In ∆ ABC,

By using Pythagoras theorem,

 \sf{ {H}^{2}  =  {B}^{2}  +  {P}^{2}}

Here,

★ H = Hypotenuse

★ B = Base

★ P = Perpendicular

  \sf{ {AC}^{2}  =  {BC}^{2}  +  {AB}^{2} }

By Substituting the values, we have:

 \sf{ {10}^{2}  =  {6}^{2}  +  {AB}^{2} }

 \sf{ {AB}^{2}  =  {10}^{2}  -  {6}^{2}}

 \sf{ {AB}^{2}  = 100 - 36}

 \sf {AB}^{2}  = 64

 \sf{ {AB}  =  \sqrt{64} }

 \sf{AB = 8 \: units}

Now let's find out the area of triangle.

If one side (base) and the corresponding height (altitude) of the triangle are known, its

 \underline{ \boxed{ \sf{Area =  \dfrac{1}{2}  \times base \times height}}}

We know,

Base = 6 units

Height = 8 units

By substituting the values in the formula, we have:

 \sf{Area \: of \: \triangle  \: ABC =  (\dfrac{1}{2}  \times 6 \times 8) \: sq. \: units}

 \sf =  (\dfrac{1}{2}  \times 48) \: sq. \: units

  \sf= 24 \: sq. \: units

∴ Area of Triangle =  \blue{ \underline{ \boxed{ \sf{24 \: sq. \: units}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions