Math, asked by Eutopia56, 3 months ago

If the base of a right angled triangle is 8 cm and the hypotenuse is 17 cm, find its area.

Answers

Answered by llSweetRainbowll
78

Question :

If the base of a right angled triangle is 8 cm and the hypotenuse is 17 cm, find its area.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⋆ DIAGRAM :

\setlength{\unitlength}{1.5cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{B}}\put(10.6,1){\large\sf{C}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.1,2){\sf{\large{?cm}}}\put(9,0.7){\sf{\large{8cm}}}\put(9.4,1.9){\sf{\large{17 cm}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\end{picture}

\underline{\bigstar\:\boldsymbol{By\: Using\; Pythagoras\: Theorem :}}

⠀⠀⠀⠀

\begin{gathered}:\implies\sf (AB)^2 + (BC)^2 = (AC)^2 \\\\\\:\implies\sf (AB)^2 = (AC)^2 - (BC)^2 \\\\\\:\implies\sf (AB)^2 = (17)^2 - (8)^2 \\\\\\:\implies\sf (AB)^2 = 289 - 64 \\\\\\:\implies\sf AB^2 = 225 \\\\\\:\implies\sf AB = \sqrt{225} \\\\\\:\implies{\underline{\boxed{\sf{AB = 15\;cm}}}}\end{gathered}

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

◗ To find out the Area of a right angle triangle formula is given by :

⠀⠀

\star\;\boxed{\sf{\pink{Area_{\:(triangle)} = \dfrac{1}{2} \times Base \times Height}}}

\underline{\bf{\dag} \:\mathfrak{Putting\;values\: :}}

⠀⠀⠀⠀

\begin{gathered}:\implies\sf Area_{\;(triangle)} = \dfrac{1}{\cancel{\;2}} \times \: \cancel{\;8} \; \times 15 \\\\\\:\implies\sf Area_{\;(triangle)} = 4 \times 15 \\\\\\:\implies{\underline{\boxed{\frak{\pink{Area_{\:(triangle)} = 60\;cm^2}}}}}\;\bigstar\end{gathered}

⠀⠀⠀⠀

\therefore{\underline{\sf{Hence,\;area\;of\;right\;angle\; \triangle\;is\;\bf{ 60\;cm^2}.}}}

Answered by dolemagar
1

Here,

= +

(17cm)²= +(8cm)²

= (17cm)²-(8cm)²

p= (17+8)cm (17-8)cm

= 25cm×9cm

= 225cm²

=15cm

Area= 1/2 (h)

= 1/2 (8cm×15cm)

= 4cm×15cm

= 60cm²

Similar questions