Math, asked by kaavyarai99, 11 months ago

If the base of an isosceles triangle is 12cm its perimeter is 35 cm find the area of the triangle

Answers

Answered by Anonymous
117

\large{\underline{\underline{\mathfrak{\green{\sf{Question:-}}}}}}.

  • If the base of an isosceles triangle is 12cm its perimeter is 35 cm find the area of the triangle

___________________

\large{\underline{\underline{\mathfrak{\sf{Given\:Here:-}}}}}.

  • Base of triangle b = 12cm

  • Perimeter of triangle = 35cm

_________________

\large{\underline{\underline{\mathfrak{\sf{Find\:Here-}}}}}.

  • Area of triangle

__________________

\large{\underline{\underline{\mathfrak{\sf{Explanation:-}}}}}.

\bold{\:we\:know\:that}

\large{\boxed{\:Perimeter\:of\:isosceles\:Triangle\\ \:(P)\:=\:(2a+b)}}

Where ,

  • a = two equal side of isosceles triangle ,

  • b = base of isosceles triangle

____________________

So ,

\leadsto\:perimeter\:(P)\:=\:(2a+12)

\leadsto\:(35)\:=\:(2a+12)

\leadsto\:2a\:=\:35-12

\leadsto\boxed{\:a\:=\frac{23}{2}}

Now, We know

\large\boxed{\:Area\:of\:isosceles\:triangle\:=\frac{1}{2}(base\:×\:height)}

_____________________

Now, Calculate height of triangle

\leadsto\boxed{\:Height\:=\sqrt{(side)^2-(base)^2}}

\leadsto\:Height\:=\sqrt{(\frac{23}{2})^2-\:(\frac{12}{2})^2}

\leadsto\:Height\:=\sqrt{(\frac{529}{4})-\:(\:36)}

\leadsto\:Height\:=\sqrt{(\frac{529-144}{4})}

\leadsto\:Height\:=\sqrt{(\frac{385}{4})}

\leadsto\:Height\:=\frac{1}{2}\:×\sqrt{385}

Or,

\leadsto\:Height\:=\frac{1}{2}\:×\:19.62

\leadsto\boxed{\:Height\:=\:9.81}

\large{\underline{\underline{\mathfrak{\sf{Area\:Of\:Triangle:-}}}}}.

\leadsto\boxed{\:Area\:=\frac{1}{2}\:×\:(base\:×\:Height)}

Keep value of Base and Height ,

\leadsto\:Area\:=\frac{1}{2}\:×\:(12×9.81)

\leadsto\:Area\:=\:(6×9.81)

\leadsto\boxed{\:Area\:=\:58.86}

____________________

Similar questions
Math, 1 year ago