Math, asked by smamoni053, 4 days ago

If the base radius and height of a right circular cone are 3 cm and 4 cm in lengths, then the slant height is?
Please Also explain it ​

Answers

Answered by bholag832
2

Step-by-step explanation:

we know that formula for finding slant height is

l^2=h^2+r^2

now the solution is

l^2=(4)^2+(3)^2

l^2= 16+9

l^2= 25

l= √25

l=5 cm

the slant height of cone is 5cm

Answered by Anonymous
11

Answer:

Diagram :

\setlength{\unitlength}{1.2mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{3\ cm}}\put(9.5,10){\sf{4\ cm}}\end{picture}

  • ✧ Radius = 3 cm
  • ✧ Height = 4 cm

Here's the latex diagram of cone. See the answer from website Brainly.in for clear understanding.

Solution :

As per the provided information in the question, we have :

  • ✧ Radius of cone = 3 cm.
  • ✧ Height of cone= 4 cm.

We need to calculate the slant height of cone.

Here's the required formula to find the slant height of cone:

\longrightarrow{\pmb{\sf{{\big( \: l \:  \big)}^{2} =  { \big( \: r  \: \big)}^{2} +  { \big( \: h  \: \big)}^{2}}}}

Where :

  • l denotes slant height
  • r denotes radius
  • h denotes height

Substituting the given values in the formula to find slant height of cone :

\longrightarrow{\sf{{\big( \: l \:  \big)}^{2} =  { \big( \: r  \: \big)}^{2} +  { \big( \: h  \: \big)}^{2}}}

\longrightarrow{\sf{{\big( \: l \:  \big)}^{2} =  { \big( \: 3 \: \big)}^{2} +  { \big( \: 4 \: \big)}^{2}}}

\longrightarrow{\sf{{\big( \: l \:  \big)}^{2} =  { \big( \: 3  \times 3  \: \big)} +  { \big( \: 4 \times 4 \: \big)}}}

\longrightarrow{\sf{{\big( \: l \:  \big)}^{2} =  { \big( \: 9 \: \big)} +  { \big( \: 16\: \big)}}}

\longrightarrow{\sf{{\big( \: l \:  \big)}^{2} =  9  + 16}}

\longrightarrow{\sf{{\big( \: l \:  \big)}^{2} = 25}}

\longrightarrow{\sf{ l  = \sqrt{25}}}

\longrightarrow{\sf{ l  = \sqrt{5 \times 5}}}

\longrightarrow{\sf{\underline{\underline{\red{ l  = 5 \: cm}}}}}

Hence, the slant height of cone is 5 cm.

\rule{220pt}{2.5pt}

Learn More :

Here's the some formulas related to cone. See the answer from website Brainly.in for clear understanding.

\begin{gathered}\boxed{\begin{minipage}{6 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cone :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:Curved \: Surface \: Area = \pi rl\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:TSA = Area\:of\:Base + CSA=\pi r^2+\pi rl\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\dfrac{1}{3}\pi r^2h\\ \\{\textcircled{\footnotesize\textsf{5}}} \: \:Slant \: Height=\sqrt{r^2 + h^2}\end{minipage}}\end{gathered}

\underline{\rule{220pt}{4pt}}

Similar questions