IF THE BISECTOR OF ANGLE B AND C OF A TRIANGLE ABC MEET AT THE POINT O. THEN PROVE THAT ANGLE BOC=90+1/2ANGLE A
Answers
Answered by
74
hey.... here's your answer
plz check the attachment
Hope this helps you ☺☺
plz check the attachment
Hope this helps you ☺☺
Attachments:
SaanviSaumya:
nice
Answered by
105
HOLA !!
ANSWER....
__________________________
Given :-
Bisector of angle B and C of a triangle meet at point O.
Prove :-
Angle BOC = 1/2angle A
Proof :-
In ∆ABC ,
Angle A + Angle B + Angle C = 180°
Angle B + Angle C = 180° - AngleA
1/2Angle B + 1/2AngleC = 180/2 - 1/2AngleA
1/2Angle B + 1/2Angle C = 90° - 1/2AngleA
In ∆BOC ,
Angle (OBC + OCB + BOC) = 180°
1/2Angle B + 1/2Angle C + BOC = 180°
90 - 1/2Angle A + Angle BOC = 180°
Angle BOC = 180° - (90 - 1/2AngleA)
Angle BOC = 180° - 90° + 1/2AngleA
Angle BOC = 90° + 1/2Angle A
- Proved -
ANSWER....
__________________________
Given :-
Bisector of angle B and C of a triangle meet at point O.
Prove :-
Angle BOC = 1/2angle A
Proof :-
In ∆ABC ,
Angle A + Angle B + Angle C = 180°
Angle B + Angle C = 180° - AngleA
1/2Angle B + 1/2AngleC = 180/2 - 1/2AngleA
1/2Angle B + 1/2Angle C = 90° - 1/2AngleA
In ∆BOC ,
Angle (OBC + OCB + BOC) = 180°
1/2Angle B + 1/2Angle C + BOC = 180°
90 - 1/2Angle A + Angle BOC = 180°
Angle BOC = 180° - (90 - 1/2AngleA)
Angle BOC = 180° - 90° + 1/2AngleA
Angle BOC = 90° + 1/2Angle A
- Proved -
Attachments:
Similar questions