Math, asked by genarohinton4079, 1 year ago

If the bisector of base angles of triangle bisects the opposite side prove that the triangle is isosceles

Answers

Answered by Anonymous
1

PQR is an isosceles triangle such that PQ = PR and Pl is the bisector of ∠ P.

To prove : ∠PLQ = ∠PLR = 90°

and QL = LX

In ΔPLQ and ΔPLR

PQ = PR (given)

PL = PL (common)

∠QPL = ∠RPL ( PL is the bisector of ∠P)

ΔPLQ = ΔPLR ( SAS congruence criterion)

QL = LR (by cpct)

and ∠PLQ + ∠PLR = 180° ( linear pair)

2∠PLQ = 180°

∠PLQ = 180° / 2 = 90° ∴ ∠PLQ = ∠PLR = 90°

Thus, ∠PLQ = ∠PLR = 90° and QL = LR.

Hence, the bisector of the verticle angle an isosceles triangle bisects the base at right angle.

hope it works ✌️

Similar questions