if the bisectors of angle ABC and ACB of a triangle ABC meet at a point O, then prove that <BOC=90° +1/2 <A.
Answers
Answered by
37
hey frnd ☺☺☺
==================
☆in triangle ABC , we have
angle [A+ B+C ] = 180° .
=》1 /2 [A+ B+ C ] = 90°
=》 1/2 A + angle 1 + angel 2 = 90°
=>> angle 1 + angle 2 = 90 °- 1 /2 angle A ____eq(1)
NOW in trianglel OBC,
angle1 + angle2 + angle BOC = 180
90 - 1/2 angleA + angle BOC = 180 FROM 1
angle BOC = 90degree + 1/2 angle A.
Hence,it is proved.
=========÷÷÷=========÷÷÷========÷÷÷===
HOPE IT HELPS⤴⤴⤴
@@@@@@@@@@@@@@@@@@@
==================
☆in triangle ABC , we have
angle [A+ B+C ] = 180° .
=》1 /2 [A+ B+ C ] = 90°
=》 1/2 A + angle 1 + angel 2 = 90°
=>> angle 1 + angle 2 = 90 °- 1 /2 angle A ____eq(1)
NOW in trianglel OBC,
angle1 + angle2 + angle BOC = 180
90 - 1/2 angleA + angle BOC = 180 FROM 1
angle BOC = 90degree + 1/2 angle A.
Hence,it is proved.
=========÷÷÷=========÷÷÷========÷÷÷===
HOPE IT HELPS⤴⤴⤴
@@@@@@@@@@@@@@@@@@@
Anonymous:
please mark as brainliest if it helps☺
Similar questions