Math, asked by mridul1880, 9 months ago

If the bisectors of Angles PQR and
angle PRQ of triangle Por meet at a point,
M then prove that 2QMR = 90° +angle p/2​

Answers

Answered by isyllus
0

Given:

\triangle PQR has angle bisectors of \angle PQR and \angle PRQ which intersect at point M.

To prove:

\angle QMR = 90^\circ + \dfrac{\angle P}2

Solution:

First of all, please have a look at the attached image for the given \triangle PQR.

Angle bisectors of \angle PQR and \angle PRQ intersect at point M.

Now, let us consider \triangle PQR.

Sum of all the angles of a triangle is equal to 180^\circ.

i.e.

\angle P + \angle PQR + \angle PRQ = 180^\circ\\\Rightarrow \angle PQR + \angle PRQ  = 180^\circ - \angle P ...... (1)

Now, let us consider \triangle QMR:

\angle MQR  = \dfrac{1}{2}\angle PQR (\because \text {QM is the angle bisector of }  \angle MQR)

\angle MRQ  = \dfrac{1}{2}\angle PRQ (\because \text {RM is the angle bisector of }  \angle MRQ)

And, Sum of all the angles of a triangle is equal to 180^\circ.

i.e.

\angle MQR + \angle MRQ + \angle QMR = 180^\circ\\\Rightarrow \dfrac{1}{2} \angle PQR+\dfrac{1}{2} \angle PRQ + \angle QMR = 180^\circ\\    \Rightarrow \dfrac{1}{2} (\angle PQR+ \angle PRQ) + \angle QMR = 180^\circ\\\\\text{Using Equation (1) :}\\\\\Rightarrow \dfrac{1}{2} (180^\circ - \angle P) + \angle QMR = 180^\circ\\\Rightarrow 90^\circ - \dfrac{1}{2}\angle P + \angle QMR = 180^\circ\\\Rightarrow   \angle QMR = 180^\circ -90^\circ + \dfrac{1}{2}\angle P\\

\Rightarrow   \angle QMR = 90^\circ + \dfrac{\angle P}{2}

Hence proved.

Attachments:
Similar questions