If the bisectors of the base angles of a triangle enclose an angle of 135°,then prove that the triangle is a right angled triangle
Answers
Answered by
10
In ∆ ABC, let the bisectors of angle B and C meet at O
therefore, angle BOC=135°
In ∆BOC,
➡angle BOC+angle BCO+angle CBO=180°
➡135+1/2(angle B)+1/2(angle C)=180°
➡1/2(angle B+angle C)=45°
➡angle B+angle C=90°-----------1.)
In ∆ ABC
➡angle A + angle B + angle C =180°
➡angle A + 90°=180° [ from-1 ]
➡angle A=90°
Hence ABC is a right angled triangle
therefore, angle BOC=135°
In ∆BOC,
➡angle BOC+angle BCO+angle CBO=180°
➡135+1/2(angle B)+1/2(angle C)=180°
➡1/2(angle B+angle C)=45°
➡angle B+angle C=90°-----------1.)
In ∆ ABC
➡angle A + angle B + angle C =180°
➡angle A + 90°=180° [ from-1 ]
➡angle A=90°
Hence ABC is a right angled triangle
Similar questions
English,
7 months ago
English,
7 months ago
Geography,
7 months ago
English,
1 year ago
Social Sciences,
1 year ago