Math, asked by kashok9978, 11 months ago

If the C.S.A. of cone is 4070 cm2 and its diameter is 70 cm.Find slant height of the cone.​

Answers

Answered by rashasheikh36
6

Answer:37cm

Step-by-step explanation:C.S.A of a come is πrl

C.S.A of a cone =πrl

4070=22/7*35*l ( 35 =d/2=70/2)

4070=110*l

4070/110=l

l=37cm

Answered by BrainlyConqueror0901
4

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Slant\:height=37\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 35\: cm} \\ \\ : \implies \text{T.S.A\:of\:cone= 4070 \: cm}^{2}\\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Slant\:height\: of \: cone(l)= ?}

• According to given question :

  \bold{As \: we \: know \: that \: C.S.A \: of \: cone}\\ : \implies \text{C.S.A\: of \: cone} = \pi rl \\ \\ : \implies 4070= \frac{22}{7} \times 35\times l\\ \\ : \implies 4070\times 7=770 \times  l\\\\ :\implies l=\frac{\cancel{28490}}{\cancel{770}} \\\\ \green{ : \implies \text{Slant\:height\: of \: cone=37\: cm}}

 \purple {\text {Some \: formula \: related \: to \: this \: topic}} \\   \pink{\circ \:  \text{T.S.A \: of \: cone =} \pi rl + \pi {r}^{2} } \\  \\ \pink{\circ \:  \text{Volume \: of \: cone =} \frac{1}{3}  \pi {r}^{2} h}

Similar questions