Physics, asked by phundetd, 2 months ago

If the capacitance of a spherical conductor is 4 μF, then radius of sphere will be

3.6 x 10³ m

4 x 10³ m

3.6 x 10¹ m

9 x 10³ m​

Answers

Answered by nirman95
7

Given:

The capacitance of a spherical conductor is 4 μF.

To find:

Radius of sphere ?

Calculation:

  • The general expression of the capacitance of an isolated sphere is as follows:

C = 4\pi  \epsilon_{0}(r)

  • Here 'r' is radius of the sphere.

Now, putting the values in SI UNITS:

 \implies 4 \times  {10}^{ - 6} = 4\pi  \epsilon_{0}(r)

 \implies 4 \times  {10}^{ - 6} =  \dfrac{r}{9 \times  {10}^{9} }

 \implies r = 4 \times 9 \times  {10}^{( 9 - 6)}

 \implies r = 36\times  {10}^{3}

 \implies r = 3.6\times  {10}^{ 4}  \: m

So, radius of sphere is 3.6 × 10 metres.

Answered by rohitkumargupta
0

HELLO DEAR,

GIVEN:- If the capacitance of a spherical conductor  is 4 μF, then radius of sphere will be

          A) 3.6 x 10⁴A)  m

          B) 4 x 10³ m

          C) 3.6 x 10¹ m

          D) 9 x 10³ m

SOLUTION:- The capacitance of  an isolated spherical conductor of radius 'r' is given by

  \bold{C=\:4π\epsilon_{0}r}

   

       According to question,

                     

    \bold{C=\:4π\epsilon_{0}r} =   4μF

        4μF = 4 × 10⁻⁶

   So,

    \bold{4π\epsilon_{0}r} = 4 × 10⁻⁶

  \bold{r} = \bold{\frac{4×10^{-6}}{4π\epsilon_{0}}}

              \bold{r} = \bold{4×10^{-6}\: × 9×10^{9}}

             

             \bold{r} = \bold{3.6×10^{4}}

 Therefore, option A) 3.6× 10⁴ is correct.

THANKS.

Similar questions