Math, asked by tanvi6079, 11 months ago

If the chord joining the points t1 and t2 to the parabola y2 = 4ax is normal to the parabola at t-th prove that t1(t1+ t2) =-2.

Answers

Answered by MaheswariS
12

The equation of normal to the parabola

y^2=4ax at the point t_1\:(a{t_1}^2,2at_1) is

\bf\,xt_1+y=a{t_1}^3+2at_1

But it meets the parabola again at t_2\:(a{t_2}^2,2at_2)

Therefore, We have

a{t_2}^2\,t_1+2at_2=a{t_1}^3+2at_1

a{t_2}^2\,t_1-a{t_1}^3=2at_1-2at_2

at_1({t_2}^2-{t_1}^2)=2a(t_1-t_2)

at_1({t_2}-{t_1})({t_2}+{t_1})=2a(t_1-t_2)

-at_1({t_1}-{t_2})({t_1}+{t_2})=2a(t_1-t_2)

-t_1({t_1}+{t_2})=2

\implies\,\boxed{\bf\,t_1({t_1}+{t_2})=-2}

Similar questions