Math, asked by ektakathwan30, 5 months ago

If the CI on a sum of money for 3 years at
the rate of 2% per annum is 306.04, then
what will be the SI?​

Answers

Answered by Anonymous
13

Compound Interest for 3 years at 2% pa = 306.04

Say Principal = p, we have

(p*(102/100)^3)-p = 306.04

= 1.061208p - p = 306.04

= 0.061208p = 306.04

= p = 306.04/ 0.061208

= p = 5000

SI = 5000*2/100*3= 300.

Answered by BrainlyShadow01
22

To Find:-

  • Find the Simple Interest.

Given:-

  • CI on a sum of money for 3 years at the rate of 2% per annum is 306.04.

Solution:-

 \tt\implies\sf C .I \:  = P \: [ \:  {(\: 1 \:  +  \: \dfrac{ r}{100} )}^{t}  \:  -  \: 1 \: ]

 \tt\implies\sf 306.04 \:  = P \: [ \:  {(\: 1 \:  +  \: \dfrac{ 2}{100} )}^{3}  \:  -  \: 1 \: ]

\tt\implies\sf 306.04 \:  = P \: [ \:  {(1.02)}^{3}  \:  -  \: 1 \: ]

\tt\implies\sf 306.04 \:  = 0.061208P \:

\tt\sf \implies {{ \: P \:  =   \frac{ \: 306.04 \: }{ \: 0.061208 \: }  \: } }

\tt\sf \implies\boxed {{ \: P \:  =  \: 5000  \: } }

So,

\tt\sf \implies {{ \: S.I \:  =   \frac{ \: PTR \: }{ \: 100 \: }  \: } }

\tt\sf \implies {{ \: S.I \:  =   \frac{ \: 5000 \: \times \: 3 \: \times \: 2 \: }{ \: 100 \: }  \: } }

\tt\sf \implies {{ \: S.I \:  =   \frac{ \: 30000 \: }{ \: 100 \: }  \: } }

\tt\sf \implies\boxed {{ \: S.I \:  =  \: 300 \: } }

Similar questions