Math, asked by srinivasmamidala24, 11 months ago

If the circle x² + y ² - 4 x-6y+k=0 does not
touch or intersect the coordinate axes
and the point (2,2) lies inside the circle-
If K belongs to interval (a,b) then (b-a) is​

Answers

Answered by rishabh1894041
8

Answer:

Answer is 3

Step-by-step explanation:

given \: that \: the \: circle \:  \\  {x}^{2}  +  {y}^{2}  - 4x - 6y + k = 0 \\ does \: not \: touch \: any \: axis. \\  \\ centre \: of \: the \: circle \: (2 \: 3) \\ radius \:  =   \sqrt{4 + 9 - k}  =  \sqrt{13 - k}  \\  \\ since \: circle \: does \: not \: touch \: axis \: hence \: radius \:  \\ will \: be \:  \\  \sqrt{13 - k}  < 2 \: and \:  \sqrt{13 - k}  < 3 \\ k  > 4 \: and \:  \: k > 9.......(1) \\  \\ point \: (2 \:, 2) \: lie \: insde \: the \: circle \: hence \:  \\ 4 + 4 - 8 - 12 + k < 0 \\ k < 12.......(2) \\  \\ from \: equation \: (1) \: and \: (2) \\ k \: lies \: in \: the \: interval \: (9 \:, 12) = (a \:, b) \\  \\ b - a = 12 - 9 = 3 \\  \\ hope \: it \: will \: help \: you....

Similar questions