Math, asked by rp2003, 8 months ago

If the circumcentre of a triangle with vertices (x1,y1),(x2,y2),(x3,y3) is (0,0) then prove that the orthocentre is (x1+x2+x3,y1+y2+y3)

Answers

Answered by jlamba855
0

Answer:

OA

2

=OB

2

=OC

2

x

1

2

+x

1

2

tan

2

θ

1

=x

2

2

+x

2

2

tan

2

θ

2

=x

3

2

+x

3

2

tan

2

θ

3

=r

2

x

1

=rcosθ

1

,x

2

=rcosθ

2

,x

3

=rcosθ

3

∴ Co-ordinate of vertices of the triangle become

A(rcosθ

1

,rsinθ

1

),B(rcosθ

2

,rsinθ

2

),C(rcosθ

3

,rsinθ

3

)

x

=

3

∑rcosθ

1

,y

=

3

∑rsinθ

1

Now, x

=

3

x

x

=r(cosθ

1

+cosθ

2

+cosθ

3

)

y

=r(sinθ

1

+sinθ

2

+sinθ

3

)

y

x

=

sinθ

1

+sinθ

2

+sinθ

3

cosθ

1

+cosθ

2

+cosθ

3

Similar questions