Math, asked by kjha7297, 5 months ago

If the circumcentre of the triangle with
vertices (a, -1), (6, -9) and (10, b) is (6, -5),
find the values of a and b.​

Answers

Answered by Anonymous
13

GIVEN:-

  • Circumcentre of the triangle is (6, -5).
  • Vertices of triangle are (a, -1), (6, -9) and (10, b).

To Find:-

Values of a and b.

SOLUTION:-

We know the formula of circumcentre of a triangle is,

\large\boxed{\sf{For\:x=\dfrac{x_{1}+x_{2}+x_{3}}{3}}}

\large\boxed{\sf{For\:y=\dfrac{y_{1}+y_{2}+y_{3}}{3}}}

According to the question,

\large{\sf{Let\:x_{1},\:x_{2}\:and\:x_{3}\:be\:a,6,10\:respectively.}}

\large{\sf{Let\:y_{1},\:y_{2}\:and\:y_{3}\:be\:-1,-9,b\:respectively.}}

Now,

\large\Rightarrow{\sf{For\:x=\dfrac{x_{1}+x_{2}+x_{3}}{3}}}

\large\Rightarrow{\sf{6=\dfrac{a+6+10}{3}}}

\large\Rightarrow{\sf{6\times3=16+a}}

\large\Rightarrow{\sf{18=16+a}}

\large\Rightarrow{\sf{18-16=a}}

\large\therefore\boxed{\sf{\pink{a=2}}}

______________________________________

\large\Rightarrow{\sf{For\:y=\dfrac{y_{1}+y_{2}+y_{3}}{3}}}

\large\Rightarrow{\sf{-5=\dfrac{(-1)+(-9)+b}{3}}}

\large\Rightarrow{\sf{-5=\dfrac{-1-9+b}{3}}}

\large\Rightarrow{\sf{-5\times3=-10+b}}

\large\Rightarrow{\sf{-15=-10+b}}

\large\Rightarrow{\sf{-15+10=b}}

\large\therefore\boxed{\sf{\red{b=-5}}}

______________________________________

\large{\blue{\underline{\boxed{\therefore{\sf{\blue{Value\:of\:a=2\:and\:Value\:of\:b=-5.}}}}}}}

Similar questions