Math, asked by sneharanaxyz123, 3 months ago

If the circumference of a circle exceeds it
diameter by 30, then find the radius of the
circle.​

Answers

Answered by Anonymous
5

GIVEN:

  • circumference of circle exceeds diameter by 30.

TO FIND:

  • Radius of circle

SOLUTION:

According to the question:-

 \large \sf \underline{ \underline{2πr=2r+30}}

 \sf :  \implies \:  \: 2πr-r=30

 \sf :  \implies \:  \: 2r(π-1)=30

 :  \implies  \:  \: \sf2r( \frac{22}{7}  - 1) = 30

 :  \implies  \:  \: \sf2r( \frac{22 - 7}{7} ) = 30

 :  \implies \:  \:  \sf2r  \times  \frac{15}{7}  = 30

 :  \implies  \:  \: \sf r =  \frac{30 \times 7}{15 \times 2}

 \large \boxed{ \sf r = 7cm}

So radius=7cm

RELATED FORMULAE:

  • Area of circle=πr²
  • Circumference of circle=2πr
Similar questions