Math, asked by mahankalsanjivani, 3 months ago

If the circumference of a circle is 198 cm find its radius and diameter​

Answers

Answered by suraj5070
358

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt If \:the\: circumference\: of \:a \:circle\: is\: 198\: cm\: find\: its\\\tt radius \:and \:diameter.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Circumference \:of \:the \:circle = 198\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf (i) Radius \:of \:circle
  •  \sf \bf (ii) Diameter \:of \:circle

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\color{springgreen} \underline {\sf (i) Radius \:of \:circle}}

 {\boxed {\boxed {\boxed {\color {blue} {\sf \bf C=2 \pi r}}}}}

  •  \sf C=circumference \:of \:the \:circle
  •  \sf r=radius \:of \:the \:circle

 {\underbrace {\overbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies 198 = 2 \times \dfrac{22}{7} \times r

 \sf \bf \implies 198\times 7=2 \times 22 \times r

 \sf \bf \implies 1386 = 44r

 \sf \bf \implies r = \dfrac{1386}{44}

 \implies {\boxed {\boxed {\color {aqua} {\sf \bf r=31.5\:cm}}}}

 {\underbrace {\color {red} {\underline {\color {red} {\overline {\color {red} {\sf \therefore The\:radius \:of\:the \:circle \:is\:31.5 \:cm}}}}}}}

—————————————————————

 {\color{springgreen} \underline {\sf (ii) Diameter \:of \:circle}}

 {\boxed {\boxed {\boxed {\color {blue} {\sf \bf D=2 r}}}}}

  •  \sf D=diameter \:of \:the \:circle
  •  \sf r=radius \:of \:the \:circle

 {\underbrace {\overbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies D=2 \times 31.5

 \implies {\boxed {\boxed {\color {aqua} {\sf \bf D=63\:cm}}}}

 {\underbrace {\color {red} {\underline {\color {red} {\overline {\color {red} {\sf \therefore The\:diameter\:of\:the \:circle \:is\:63 \:cm}}}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

___________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \bf Circumference \:of \:the \:circle =2 \pi r

 \bf Area \:of \:the \:circle = \pi {r}^{2}

 \bf Diameter \:of \:the \:circle =2r

 \bf Radius \:of \:the \:circle =\dfrac{D}{2}

Answered by ScanTxN
33

\blue{\bold{\underline{\underline{}}}}

Hope It helps!

Attachments:
Similar questions