Math, asked by anoopbrar48043, 5 months ago

If the circumference of a circular sheet is 154 m . Find it's radius And area of the sheet (take π=22/7)​

Answers

Answered by EnchantedGirl
23

\bigstar \underline{\underline{\sf Given:-}}\\

  • Circumference of a circular sheet =154cm.

\bigstar \underline{\underline{\sf To\ find:-}}\\

  • Radius.
  • Area of sheet.

\bigstar \underline{\underline{\sf Solution:-}}\\

\\

1.To find Radius:-

\\

We know:

Circumference of a sphere =2πr

\\

Given,circumference =2πr

:\implies \sf 2\pi r=154\\\\:\implies \sf 2(\frac{22}{7} )(r)=154\\\\:\implies \sf r=154 (\frac{7}{44} )\\\\:\implies \sf r=7(\frac{7}{2} )\\\\:\implies \sf r=\frac{49}{2} \\\\:\implies \boxed{\boxed{\sf r=24.5m.}}\\\\

---------------------

2.To find Area of sheet:-

\\

We know:

Area of sphere=πr²

\\

:\implies \sf Area=\pi r^2\\\\:\implies \sf \pi r^2=\frac{22}{7} (24.5)^2\\\\:\implies \sf \frac{22}{7} (\frac{49}{2} )(\frac{49}{2} )\\\\:\implies \sf 11\times \frac{343}{2} \\\\:\implies \sf \frac{3773}{2} \\\\:\implies \boxed{\boxed{\sf Area=1886.5m^2}}\\\\

Hence,

Radius of sheet = 24.5m.

Area of sheet = 1886.5m²

------------------------------

Know More:-

\\

↬Radius =Diameter/2

↬Length of an arc =(Central angle made by the arc/360°) × 2 × π × R.

↬Equal chords and equal circles have the equal circumference.

↬Circles having different radius are similar.

↬The diameter of a circle is the longest chord of a circle.

↬Area of circle =πr².

  • Area of square=(side)².
  • Area of rectangle =l×b.
  • Area of triangle =1/2×b×h
  • Area of semi-circle: πr²/2

↬Perimeter of semi-circle: πr.

______________

Answered by EnchantedBoy
37

\bigstar\bf\underline{\underline{Given:-}}

  • circumference of a circular sheet is 154 m

\bigstar\bf\underline{\underline{To \ find:-}}

  • Area of sheet

  • Radius

\bigstar\bf\underline{\underline{Solution:-}}

Radius = r = ?

Given,

Circumference = 154m

\sf 2\pi r \ = \ 154

\implies\sf 2\times \frac{22}{7}\times r \ = \ 154

\implies\sf \frac{2\times 22}{7}\times r \ = \ 154

\implies\sf r \ = \ 154\times \frac{7}{2\times 22}

\implies\sf r \ = \ 77\times \frac{7}{22}

\implies\sf r \ =  \ 7\times \frac{7}{22}

\implies\sf r \ = \ \frac{49}{2}

\boxed{\boxed{\bf Radius \ = \ 24.5m}}

Now,

Area of circle = πr²

\implies\sf \frac{22}{7}\times (24.5)^2

\implies\sf \frac{22}{7}\times (\frac{49}{2})^2

\implies\sf \frac{22}{7}\times \frac{49}{2}\times \frac{49}{2}

\implies\sf \frac{11}{7}\times 49\times \frac{49}{2}

\implies\sf 11\times 7\times \frac{49}{2}

\implies\sf 11\times \frac{343}{2}

\implies\sf \frac{3773}{2}

\boxed{\boxed{\bf 1886.5 m^2}}

Therefore,

Radius of circular sheet is \bf 24.5m

Area of circular sheet is \bf 1886.5 m^2

Similar questions