Math, asked by akbar81, 6 months ago

if the circumference of the base of cylinder is
44cm and the sum of its radius and height is
27 cm, find its total surface area.


Answers

Answered by BrainlyEmpire
46

\sf Given \begin{cases} & \sf{Circumference\:of\:the\:base\;of\:cylinder = \bf{44\:cm}}  \\ & \sf{Sum\:of\:radius\:and\:height\:of\:cylinder = \bf{27\:cm}} \end{cases}\\ \\

To find: Total surface area of cylinder?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

☯ Let's consider r and h be the radius and height of cylinder respectively.

⠀⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Circumference_{\;(circle)} = 2 \pi r}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times r = 44 \\ \\

:\implies\sf \dfrac{44}{7} \times r = 44\\ \\

:\implies\sf  r = \cancel{44} \times \dfrac{7}{ \cancel{44}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{r = 7\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Radius\:of\:cylinder\:is\: {\textsf{\textbf{7\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Sum of radius and height of cylinder is 27 cm.

⠀⠀⠀⠀

:\implies\sf r + h = 27\\ \\

:\implies\sf 7 + h = 27\\ \\

:\implies\sf h = 27 - 7\\ \\

:\implies{\underline{\boxed{\frak{\purple{h = 20\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Height\:of\:cylinder\:is\: {\textsf{\textbf{20\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Now, Finding Curved surface area of cylinder,

⠀⠀⠀

\star\;{\boxed{\sf{\pink{Total\:surface\:area_{\;(rectangle)} = 2 \pi r(r + h)}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{ \cancel{7}} \times \cancel{7} \bigg( 7 + 20 \bigg)\\ \\

:\implies\sf 2 \times 22 \times 27\\ \\

:\implies{\underline{\boxed{\frak{\purple{1188\:cm^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Total\:surface\:area\:of\:cylinder\:is\: \bf{1188\:cm^2}.}}}

Answered by ItzMayu
177

Answer:

\sf Given \begin{cases} & \sf{Circumference\:of\:the\:base\;of\:cylinder = \bf{44\:cm}}  \\ & \sf{Sum\:of\:radius\:and\:height\:of\:cylinder = \bf{27\:cm}} \end{cases}\\ \\

To find: Total surface area of cylinder?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀

☯ Let's consider r and h be the radius and height of cylinder respectively.

⠀⠀⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Circumference_{\;(circle)} = 2 \pi r}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{7} \times r = 44 \\ \\

:\implies\sf \dfrac{44}{7} \times r = 44\\ \\

:\implies\sf  r = \cancel{44} \times \dfrac{7}{ \cancel{44}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{r = 7\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Radius\:of\:cylinder\:is\: {\textsf{\textbf{7\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

Sum of radius and height of cylinder is 27 cm.

⠀⠀⠀⠀

:\implies\sf r + h = 27\\ \\

:\implies\sf 7 + h = 27\\ \\

:\implies\sf h = 27 - 7\\ \\

:\implies{\underline{\boxed{\frak{\purple{h = 20\:cm}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Height\:of\:cylinder\:is\: {\textsf{\textbf{20\:cm}}}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀

☯ Now, Finding Curved surface area of cylinder,

⠀⠀⠀

\star\;{\boxed{\sf{\pink{Total\:surface\:area_{\;(rectangle)} = 2 \pi r(r + h)}}}}\\ \\

:\implies\sf 2 \times \dfrac{22}{ \cancel{7}} \times \cancel{7} \bigg( 7 + 20 \bigg)\\ \\

:\implies\sf 2 \times 22 \times 27\\ \\

:\implies{\underline{\boxed{\frak{\purple{1188\:cm^2}}}}}\;\bigstar\\ \\

\therefore\:{\underline{\sf{Total\:surface\:area\:of\:cylinder\:is\: \bf{1188\:cm^2}.}}}

Similar questions