Math, asked by zeeza1, 2 months ago

if the coefficients of 1/x and x^2 are equal in the expression of (ax - b/x^2 )^8 find the relationship between a and b

Answers

Answered by Anonymous
20

\fbox \pink{ Expression Of Binomial Theorem }

{ (x+a)^{n} = ^{n}cox^{n}a^{0} + ^{n}c1x^{n-1}a^{1}}

{ ^{n}C2x^{n-2}a^{2}x - - - - - - ^{n}cnx^{0}a^{n}}

\sf\underline\bold \purple{ where \: in }

{ for \: n^{+}ve \: integral}

{ (1+ax+bx^{2})(1-2x) ^{18}}

{=11+ax+bx^{2})(^{18}co^{-18}c1}

{(2x) +^{18}c2(2x^{2})- - - - - - - -)}

\sf\underline\bold \green{ Coefficients \: of }

{x^{3} = ^{-18}C3(2)^{3}+^{18}c2(2)^{2}a-^{18}C1(2)b=0}

Coefficients of

{ x^{4}=^{-18}c4(2)^{4}+^{18}C3(2)^{3}a+^{18}C2(2)^{2}b = 0}

{ —› -18×17×16×8/3×2+18×17}

{ ×4a/2-18×2b=0}

And

{ —› 18×17×16×15×16/4×3×2+18}

{×17×16×8a6-18×17/2×4b=0}

{—›12(-544+51a-3b)=0}

{and \: 12×17(240-32a+3b)=0}

{ a=16 }

{ b=272/3 }

\large\sf\underline\bold \red{ Hope \: this \: will \: help \: you }

Similar questions