Math, asked by amuly62, 3 months ago

If the coefficients of 5th and 19th terms in the expansion of (1 + x)n

are equal, then n =​

Answers

Answered by pulakmath007
4

SOLUTION

GIVEN

The coefficients of 5th and 19th terms in the expansion of  \sf{ {(1 + x)}^{n} } are equal

TO DETERMINE

The value of n

EVALUATION

Here the given expansion is  \sf{ {(1 + x)}^{n} }

So the coefficients of 5th in the expansion

 \sf{ =   {}^{n}C_4 }

So the coefficients of 19th terms in the expansion

 \sf{ =   {}^{n}C_{18 }}

So by the given condition

 \sf{ {}^{n}C_4 = {}^{n}C_{18} }

 \implies \sf{n = 4 + 18}

 \implies \sf{n = 22}

FINAL ANSWER

Hence the required value of n = 22

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. (32C0)^2-(32C1)^2+(32C2)^2-...(32C32)^2=

https://brainly.in/question/28583245

2. (C1/C0) + (2C2 /C1) + ( 3C3/ C2) +.... + nCn/Cn-1= ?

https://brainly.in/question/15423609

Answered by MaheswariS
4

\textbf{Given:}

\textsf{The coefficients of 5 th and 19th terms in the expansion of}

\mathsf{(1+x)^n\;are\;equal}

\textbf{To find:}

\textsf{The value of n}

\textbf{Solution:}

\underline{\textsf{Formula used:}}

\mathsf{The\;r\,th\;term\;in\the\;expansion\;of\;(a+b)^n\;is}

\boxed{\mathsf{T_{r+1}=n_{C_r}\,a^{n-r}\,b^r}}

\mathsf{Consider,\;(1+x)^n}

\mathsf{r\,th\,term\;is\;T_{r+1}=n_{C_r}\,x^r}

\implies\mathsf{T_5=n_{C_4}\,x^4\;\&\;T_{19}=n_{C_{18}}\,x^{18}}

\mathsf{As\;per\;given\;data,}

\mathsf{n_{C_4}=n_{C_{18}}}

\mathsf{Using}

\boxed{\mathsf{If\;n_{C_p}=n_{C_q}\;then\;n=p+q}}

\implies\mathsf{n=4+18}

\implies\boxed{\mathsf{n=22}}

\textbf{Find more:}

Similar questions