If the complex number z satisfies the condition z>=3 then the least value of
Answers
Answered by
1
Answer:
We have,
∣∣∣z+1z∣∣∣≥∣∣∣|z|−∣∣1z∣∣∣∣∣|z+1z|≥||z|−|1z||
[∵|z1+z2|≥∣∣|z1|−|z2|∣∣.][∵|z1+z2|≥||z1|−|z2||.]
⟹∣∣∣z+1z∣∣∣≥∣∣∣|z|−1|z|∣∣∣...(i)⟹|z+1z|≥||z|−1|z||...(i)
As, |z|≥3|z|≥3
⟹1|z|≤13⟹1|z|≤13
⟹−1|z|≥−13⟹−1|z|≥−13
∴|z|−1|z|≥3−13=83∴|z|−1|z|≥3−13=83
⟹∣∣∣|z|−1|z|∣∣∣≥∣∣83∣∣=83...(ii)⟹||z|−1|z||≥|83|=83...(ii)
Thus, from (i) & (ii), we can conclude that,
∣∣∣z+1z∣∣∣≥83.†|z+1z|≥83.†
Hence, the required minimum value is,
=83.=83.
Hope, you'll understand..!!
Similar questions
Social Sciences,
6 months ago
Math,
6 months ago
Science,
6 months ago
Biology,
11 months ago
Math,
11 months ago
CBSE BOARD X,
1 year ago
English,
1 year ago