Math, asked by mraryan201286, 3 months ago

if the consecutive coefficient in the expansion of (1+x)^n be 56.70 and 56. find n and the position of the coefficients.​

Answers

Answered by mathdude500
5

Given Question :-

If the three consecutive coefficient in the expansion of (1+x)^n be 56, 70 and 56. Find n and the position of the coefficients.

Answer :-

Let three consecutive terms be r, (r + 1) and (r + 2).

We know that

 \sf \: In  \: expansion  \: of  \:  {(1 + x)}^{n} , \: the \: coefficient \: of \:

 \sf \: T_r \:  = \:^n C_{r - 1}

and

Also,

\rm :\longmapsto\:\dfrac{\:^n C_x}{\:^n C_y}  = \dfrac{n - y}{x}  \:  \:  \: if \: x - y = 1

Now,

 \sf \: Coefficient  \: of \: T_r = \:^n C_{r - 1}

 \sf \: Coefficient  \: of \: T_{r + 1} = \:^n C_{r}

 \sf \: Coefficient  \: of \: T_{r + 2} = \:^n C_{r  +  1}

Now,

  • According to statement,

\rm :\longmapsto\:\:^n C_{r - 1} = 56 -  - (1)

\rm :\longmapsto\:\:^n C_r = 70 -  -  - (2)

\rm :\longmapsto\:\:^n C_{r  +  1} = 56 -  -  - (3)

Now,

  • Divide equation (2) by equation (1), we get

\rm :\longmapsto\:\dfrac{\:^n C_r}{\:^n C_{r - 1}}  = \dfrac{70}{56}

\rm :\longmapsto\:\dfrac{n - (r - 1)}{r}  = \dfrac{5}{4}

\rm :\longmapsto\:\dfrac{n - r + 1}{r}  = \dfrac{5}{4}

\rm :\longmapsto\:4n - 4r + 4 = 5r

\rm :\implies\:9r - 4n = 4 -  -  - (4)

Now,

  • Divide equation (3) by equation (2), we get

\rm :\longmapsto\:\dfrac{\:^n C_{r  +  1}}{\:^n C_r}  = \dfrac{56}{70}

\rm :\longmapsto\:\dfrac{n - r}{r + 1}  = \dfrac{4}{5}

\rm :\longmapsto\:5n - 5r = 4r + 4

\bf\implies \:5n - 9r = 4 -  -  - (5)

  • On Adding equation (4) and equation (5), we get

\bf\implies \:n \:  =  \: 8

  • On substituting n = 8, in equation (4), we get

\rm :\longmapsto\:9r - 4 \times 8 = 4

\rm :\longmapsto\:9r - 32 = 4

\rm :\longmapsto\:9r = 36

\bf\implies \:r = 4

\bf\implies \:3 \:  consecutive \:  terms \:  are \:  4, \: 5 \: and \: 6

─━─━─━─━─━─━─━─━─━─━─━─━─

Additional Information :-

 \boxed{ \bf{ \: \:^n C_x = \:^n C_y\rm \implies\:x = y \: or \: n = x + y}}

 \boxed{ \bf{ \: \:^n C_r + \:^n C_{r - 1} = \:^{n + 1} C_r}}

 \boxed{ \bf{ \:\dfrac{\:^n C_r}{\:^n C_{r - 1}}  = \dfrac{n - r + 1}{r}}}

 \boxed{ \bf{ \: Coefficient  \: of \:  {x}^{r} \:in  \: expansion \:  of \:  {(1 + x)}^{n}  \: is \: \:^n C_r}}

Similar questions