Math, asked by candy1415, 6 months ago

If the coordinates of points A and B are (-2,-2) and (2,-4) respectively , find the coordinates of the point P such that AP = 3/7 AB , where P lies on the line segment AB​

Answers

Answered by aryan073
4

Step-by-step explanation:

ap =  \frac{3}{7} ab

consider \: the \: point \: p(x.y)

by \: using \: distance \: formula

ap =  \frac{3}{7} ab

\huge\sf\green{Answer}

 \sqrt{ {(y2 - y1) }^{2} +  {(x2 - x1)}^{2}  }  =  \frac{3}{7}  \times  \sqrt{ {(y2 - y1)}^{2} +  {(x2 - x1)}^{2}  }

 \sqrt{ {(y2 - ( - 2)}^{2} +  {(x2 - ( - 2)}^{2}  }  =  \frac{ 3}{7}  \times  \sqrt{ { - 4 - ( - 2)}^{2}  +  {(2 - ( - 2)}^{2}) }

 {(y2  + 4)}^{2}  +  {(x2 + 4)}^{2}  =  \frac{9}{49}  \times  { { (- 4 + 2)}^{2}  +  {(2 - ( - 2)}^{2}) }

49( {y 2+ 4)}^{2}  +  {(x2 + 4)}^{2} = 9  \times  {( - 2)}^{2}  +  {(4)}^{2} )

49( {y}^{2}  + 16 + 8y) +  {x}^{2} + 8x + 16 = 9 \times 4  +  16

 49{y}^{2}  + 784 + 392y +  {x}^{2} + 8x + 16 = 52

 {49y}^{2}  +  {x}^{2}  + 8x + 392y + 800 = 16

 {49y}^{2}  +  {x}^{2}  + 8x + 392y + 800 - 16 = 0

 {49y}^{2}  +  {x}^{2}  + 8x + 392y + 784 = 0

Similar questions