if the coordinates of the centre and a point on the circle are c(3 -4) and a(-2 1) respectively then the radius of the circle â€r’ =
Answers
Answered by
26
Hey there !
Solution:
The Radius can be calculated by using the Distance Formula
Distance Formula = √ ( x₂ - x₁ )² + ( y₂ - y₁ )²
According to this question,
Points : ( 3, -4 ) ; ( -2, 1 )
=> x₁ = 3 ; x₂ = -2 , y₁ = -4 ; y₂ = 1
Substituting in the formula we get,
=> Distance = √ ( -2 -3 )² + ( 1 - ( -4 ) )²
=> Distance = √ ( - 5 )² + ( 5 )² => √ 25 + 25 = √ 50
Hence the distance between the centre and the point on the circle is √ 50 units. Hence the radius of the circle is √ 50 units.
Hope my answer helped !
Prakhar2908:
Excellent answer !!!!! :)
Answered by
16
H€YA!!
----------
------------------------------------------------------------------------------------------------------
◀COORDINATE GEOMETRY ▶
------------------------------------------------------------------------------------------------------
◻◼Given that ,
C ( 3, -4 )
A ( -2 , 1 )
Now we need to find the Radius Of the Circle . This can be calculated by Using the Distance Formula . That is ,
So substituting the Values in the formula,
√ ( -2-3)^2 + (1+4)^2
= √ ( -5)^2 + (5)^2
= √ 25 + 25 = √50.
Hence The Radius is √50 units ..
---------------------------------------------------☺---------------------------------------------------
----------
------------------------------------------------------------------------------------------------------
◀COORDINATE GEOMETRY ▶
------------------------------------------------------------------------------------------------------
◻◼Given that ,
C ( 3, -4 )
A ( -2 , 1 )
Now we need to find the Radius Of the Circle . This can be calculated by Using the Distance Formula . That is ,
So substituting the Values in the formula,
√ ( -2-3)^2 + (1+4)^2
= √ ( -5)^2 + (5)^2
= √ 25 + 25 = √50.
Hence The Radius is √50 units ..
---------------------------------------------------☺---------------------------------------------------
Similar questions