Math, asked by patelneel410, 1 year ago

If the coordinates of the mid points of the sides of a triangle are (1,2),(0,-1)and(2,-1).Find the coordinates of its vertices of the triangle.

Answers

Answered by MaheswariS
151

\textbf{Given:}

\text{Mid points of sides of the triangle are (1,2),(0,-1) and (2,-1)}

\textbf{To find:}

\text{Vertices of the given triangle}

\textbf{Solution:}

\text{Let the vertices of the triangle be}

\text{$A(x_1,y_1)$, $B(x_2,y_2)$ and $C(x_3,y_3)$}

\textbf{Mid point of AB=(1,2)}

\implies(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2})=(1,2)

\implies\dfrac{x_1+x_2}{2}=1\;\text{and}\;\dfrac{y_1+y_2}{2}=2

\implies\;x_1+x_2=2\;.......(1)\;\text{and}\;y_1+y_2=4\;......(2)

\textbf{Mid point of BC=(0,-1)}

\implies(\dfrac{x_2+x_3}{2},\dfrac{y_2+y_3}{2})=(0,-1)

\implies\dfrac{x_2+x_3}{2}=0\;\text{and}\;\dfrac{y_2+y_3}{2}=-1

\implies\;x_2+x_3=0\;.......(3)\text{and}\;y_2+y_3=-2\;......(4)

\textbf{Mid point of AC=(2,-1)}

\implies(\dfrac{x_1+x_3}{2},\dfrac{y_1+y_3}{2})=(2,-1)

\implies\dfrac{x_1+x_3}{2}=2\;\text{and}\;\dfrac{y_2+y_3}{2}=-1

\implies\;x_1+x_3=4\;.......(5)\;\text{and}\;y_1+y_3=-2\;......(6)

\text{Adding (1),(3) and (5)}

2(x_1+x_2+x_3)=6

\implies\;x_1+x_2+x_3=3.......(7)

\text{using (1) in (7)}

2+x_3=3\implies\,x_3=1

\text{using (3) in (7)}

x_1+0=3\implies\,x_1=3

\text{using (5) in (7)}

x_2+4=3\implies\,x_2=-1

\text{Adding (2),(4) and (6)}

2(y_1+y_2+y_3)=0

\implies\;y_1+y_2+y_3=0.......(8)

\text{using (2) in (8)}

4+y_3=0\implies\,y_3=-4

\text{using (4) in (8)}

y_1+(-2)=0\implies\,y_1=2

\text{using (6) in (8)}

y_2+(-2)=0\implies\,y_2=2

\bf(x_1,y_1)=(3,2)

\bf(x_2,y_2)=(-1,2)

\bf(x_3,y_3)=(1,-4)

\therefore\textbf{The vertices are (3,2), (-1,2) and (1,-4)}

Answered by satikashirisha
2

Answer:

Step-by-step explanation:

Similar questions