if the cos A -sin A =1 prove that Cos A + sin A=+-1
Answers
Answered by
1
Cos A + Sin A=1
1 - Sin A - cosA= 0
-SinA - CosA = -1
Sin A + Cos A = + - 1
1 - Sin A - cosA= 0
-SinA - CosA = -1
Sin A + Cos A = + - 1
AthiraUday123:
Hope it helps u
Answered by
3
Hey !!!
CosA - sinA = 1 -----1)
CosA + sinA -----;--2)
1st of all adding equation 1 and 2 we get.
(CosA - sinA )² + (cosA + sinA )²
= Cos²A + sin²A - 2sinA ×cosA + cos²A + sin²A + 2sinA ×cosA
= 1 + 1 = 2
Now , from 1 , there is given that ..
CosA - sinA = 1
So,( cosA - sinA )² + (cosA + sinA )² = 2
=> 1² + (cosA + sinA )² = 2
(CosA + sinA ) =√ 2-1
CosA + SinA =+-√1 Prooved
Hope it helps you !!!!
#Rajukumar1111@@@@
CosA - sinA = 1 -----1)
CosA + sinA -----;--2)
1st of all adding equation 1 and 2 we get.
(CosA - sinA )² + (cosA + sinA )²
= Cos²A + sin²A - 2sinA ×cosA + cos²A + sin²A + 2sinA ×cosA
= 1 + 1 = 2
Now , from 1 , there is given that ..
CosA - sinA = 1
So,( cosA - sinA )² + (cosA + sinA )² = 2
=> 1² + (cosA + sinA )² = 2
(CosA + sinA ) =√ 2-1
CosA + SinA =+-√1 Prooved
Hope it helps you !!!!
#Rajukumar1111@@@@
Similar questions