Math, asked by MUGAMBOO, 7 months ago

if the csa of sphere is 900π cm² find the radius ​

Answers

Answered by Anonymous
8

\huge{\mathbb{\red{ANSWER:-}}}

For a sphere -

Given :-

\sf{Curved \: Surface \: Area = 900\pi \: cm^{2}}

To Find :-

\sf{radius \: of \: the \: sphere(r) = ?}

Using Formula :-

\sf{CSA \: of \: Sphere = 4\pi r^{2}}

Solution :-

\sf{Curved \: surface \: Area = 900\pi}

\sf{4\pi r^{2} = 900\pi}

\sf{4 r^{2} = 900}

\sf{r^{2} =\dfrac{900}{4}}

\sf{r^{2} = 225}

\sf{r = \sqrt{225}}

\sf{r = 15 \: cm}

Result :-

\sf{Radius \: of \: the \: sphere \: is \: 15 \: cm.}

Extra Related Formulas :-

(1)\sf{TSA \: of \: Sphere = 4\pi r^{2}}

(2)\sf{Volume \: of \: Sphere =\dfrac{4}{3}\pi r^{3}}

Answered by Intelligentcat
2

Answer :-

:\implies  \underline{ \boxed{ \sf r =  15\: cm }}\:  \:  \:  \: \Bigg\lgroup\textsf{\textbf{Radius of the Sphere}}\Bigg\rgroup\\  \\  \\

Given :-

✦Csa of sphere is 900π cm²

Have to Find :-

Radius of the Sphere.

\Large{\underline{\underline{\bf{Solutions:-}}}}

➹Curved Surface Area of Sphere = 4πr²

➹900π = 4πr²

Substracting π from both sides we get :

➹ r² = 900 ÷ 4

➹ r² = 225

➹ r = √225

➹ r = 15 cm

\sf\bigstar\:\underline{\purple{\:\:\: Radius \: of \: the \: sphere\:  :-\:\:\:}} \\ \\ 15cm

✧・゚: *✧・゚:*✧・゚: *✧・゚:*✧・゚: *✧・

Formulas required :-

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Similar questions