Math, asked by MUGAMBOO, 5 months ago

if the csa of sphere is 900π cm² find the radius​

Answers

Answered by sethrollins13
82

Given :

  • C.S.A of Sphere is 900π cm² .

To Find :

  • Radius of Sphere .

Solution :

For Radius :

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Sphere=4\pi{{r}^{2}}}

Putting Values :

\longmapsto\tt{900{\not{\pi}}=4{\not{\pi}}{{r}^{2}}}

\longmapsto\tt{900=4\times{{r}^{2}}}

\longmapsto\tt{\cancel\dfrac{900}{4}={r}^{2}}

\longmapsto\tt{225={r}^{2}}

\longmapsto\tt{\sqrt{225}=r}

\longmapsto\tt\bf{15\:cm=r}

So , The Radius of Sphere is 15 cm ..

_______________________

  • Surface Area of Sphere = 4πr²
  • Volume of Sphere = 4/3 πr³
  • C.S.A of Hemisphere = 2πr²
  • T.S.A of Hemisphere = 3πr²
  • Volume of Hemisphere = 2/3 πr³

_______________________

Answered by Mister360
28

Answer:

 \huge \bf \: question

if the csa of sphere is 900π cm² find the radius

 \huge \bf \: to \: find

Height of sphere

 \huge \bf \: solution

As we know that C.S.A of sphere = 4πr²

900 \pi \:  = 4 \pi \:  {r}^{2}

900 = </u></strong><strong><u>4</u></strong><strong><u> </u></strong><strong><u>\</u></strong><strong><u>t</u></strong><strong><u>i</u></strong><strong><u>m</u></strong><strong><u>e</u></strong><strong><u>s</u></strong><strong><u> </u></strong><strong><u>{r}^{2}

 \frac{900}{4}  =  {r}^{2}

 \sqrt{225}  =  {r}

15cm

So , the height of sphere = 15 cm.

Similar questions