Math, asked by MUGAMBOO, 6 months ago

if the csa of sphere is 900π cm² find the radius please help​

Answers

Answered by Anonymous
12

Given :-

  • Curved Surface Area of Sphere = 900π cm²

To Find :-

  • Radius of Sphere = ?

Answer :-

  • Radius of Sphere = 15 cm

Explaination :-

→ Curved Surface Area of Sphere = 4πr²

→ 900π = 4πr²

Substracting π from both sides we get :

→ r² = 900 ÷ 4

→ r² = 225

Taking square root to the both sides we get :

→ r = √225

r = 15 cm

Therefore,the radius of Sphere is 15 cm.

Extra Shots :-

  • Volume of cylinder = πr²h
  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cone = ⅓ πr²h
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • Volume of cuboid = l × b × h
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • Volume of cube = a³
  • Volume of sphere = 4/3πr³
  • Surface area of sphere = 4πr²
  • Volume of hemisphere = ⅔ πr³
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²
Answered by Intelligentcat
31

\Large{\boxed{\underline{\overline{\mathfrak{\star \: Question:- \: \star}}}}}

if the csa of sphere is 900π cm² find the radius .

\huge\underline{\overline{\mid{\bold{\pink{ANSWER-}}\mid}}}

:\implies  \underline{ \boxed{ \sf r =  15\: cm }}\:  \:  \:  \: \Bigg\lgroup\textsf{\textbf{Radius of the Sphere}}\Bigg\rgroup\\  \\  \\

\Large{\underline{\underline{\bf{GiVen:-}}}}

✦Csa of sphere is 900π cm²

Have to Find :-

Radius of the Sphere.

\Large{\underline{\underline{\bf{Solutions:-}}}}

➹Curved Surface Area of Sphere = 4πr²

➹900π = 4πr²

Substracting π from both sides we get :

➹ r² = 900 ÷ 4

➹ r² = 225

➹ r = √225

➹ r = 15 cm

\sf\bigstar\:\underline{\purple{\:\:\: Radius \: of \: the \: sphere\:  :-\:\:\:}} \\ \\ 15cm

✧・゚: *✧・゚:*✧・゚: *✧・゚:*✧・゚: *✧・

Formulas required :-

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Similar questions