Math, asked by diyu46221, 10 months ago

If the curve ay+x^2=7 and x^3=y, cut orthogonally at (1,1), then find the value of a

Answers

Answered by MaheswariS
2

\underline{\textsf{Given:}}

\mathsf{x^2+ay=7}\;\textsf{and}\;\mathsf{x^3=y}

\textsf{cut orthogonally}

\underline{\textsf{To find:}}

\textsf{The value of a}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{x^2+ay=7}

\textsf{Differentiate with respect to x}

\mathsf{2x+a\,\dfrac{dy}{dx}=0}

\implies\mathsf{\dfrac{dy}{dx}=\dfrac{-2x}{a}}

\textsf{Slope of tangent}

\mathsf{m_1=(\dfrac{dy}{dx})_(1,1)=\dfrac{-2}{a}}

\mathsf{x^3=y}

\textsf{Differentiate with respect to x}

\mathsf{3x^2=\dfrac{dy}{dx}}

\textsf{Slope of tangent}

\mathsf{m_2=(\dfrac{dy}{dx})_(1,1)=3(1)^2=3}

\textsf{Since the curves cut orthgonally, we have}

\mathsf{m_1{\times}m_2=-1}

\mathsf{\dfrac{-2}{a}{\times}3=-1}

\implies\boxed{\mathsf{a=6}}

\underline{\textsf{Answer:}}

\textsf{The value of a is 6}

Similar questions