Math, asked by wigglewiggle2004, 6 months ago

If the curve y = f(x) passing through the point (1, 2) and satisfies the differential equation xdy + (y + x^3y^2)dx = 0, then

Answers

Answered by MaheswariS
0

\underline{\textsf{Given:}}

\textsf{Differential equation is}

\mathsf{x\,dy+(y+x^3y^2)dx=0}

\underline{\textsf{To find:}}

\textsf{Equation of the curve passses through (1,2) and satisfies given}

\mathsf{differential\;equation}

\underline{\textsf{Solution:}}

\mathsf{Consider,}

\mathsf{x\,dy+(y+x^3y^2)dx=0}

\mathsf{x\,dy+y\,dx+x^3y^2\,dx=0}

\mathsf{x\,dy+y\,dx=-x^3y^2\,dx}

\mathsf{x\,dy+y\,dx=-(xy)^2\,xdx}.....(1)

\bf\,Take,\;t=xy

\bf\dfrac{dt}{dx}=x\dfrac{dy}{dx}+y.1

\bf\,dt=x\,dy+y\,dx

\mathsf{Now,\;(1)\,becomes}

\mathsf{dt=-t^2\,xdx}

\mathsf{t^{-2}dt=xdx}

\mathsf{Integrating}

\mathsf{\int\,t^{-2}dt=\int\,xdx}

\mathsf{\dfrac{t^{-1}}{-1}=\dfrac{x^2}{2}+C}

\mathsf{\dfrac{-1}{t}=\dfrac{x^2}{2}+C}

\mathsf{\dfrac{-1}{xy}=\dfrac{x^2}{2}+C}

\textsf{Since the curve passes through (1,2)}

\mathsf{\dfrac{-1}{2}=\dfrac{1}{2}+C}

\mathsf{-\dfrac{1}{2}-\dfrac{1}{2}=C}

\mathsf{C=-1}

\therefore\mathsf{The\;required\;curve\;is}

\mathsf{\dfrac{-1}{xy}=\dfrac{x^2}{2}-1}

\mathsf{\dfrac{-1}{xy}-\dfrac{x^2}{2}=-1}

\mathsf{\dfrac{2+x^3y}{2xy}=1}

\boxed{\mathsf{x^3y-2xy-2=0}}

Find more:

Solve x(x-y)dy+y^2dx=0​

https://brainly.in/question/13164355

Solve dy/dx=e^3x-2y+ x^2 e^-2y

https://brainly.in/question/5999273

Reduce the differential equation to separable formand then solve

(x + 2y)dx + (2x + y)dy = 0, y(0) = 1​

https://brainly.in/question/28029769

Similar questions