Math, asked by ireneghosh90, 5 hours ago

If the dcs of a line be < 2/7,3/7,k/7> what is the value of k?​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:d.c's \: of \: a \: line \: are \:  &lt; \dfrac{2}{7} , \: \dfrac{3}{7}, \:  \dfrac{k}{7}  &gt;

We know,

If < l, m, n > represents the direction cosines of line then

\red{\rm :\longmapsto\:\boxed{\tt{  {l}^{2}  +  {m}^{2}  +  {n}^{2}  = 1 \: }}}

So, here

\red{\rm :\longmapsto\:l \:  =  \: \dfrac{2}{7}}

\red{\rm :\longmapsto\:m \:  =  \: \dfrac{3}{7}}

\red{\rm :\longmapsto\:n \:  =  \: \dfrac{k}{7}}

So,

\red{\rm :\longmapsto\: {\bigg[\dfrac{2}{7} \bigg]}^{2} + {\bigg[\dfrac{3}{7} \bigg]}^{2} + {\bigg[\dfrac{k}{7} \bigg]}^{2} = 1}

\red{\rm :\longmapsto\:\dfrac{4}{49}  + \dfrac{9}{49}  + \dfrac{ {k}^{2} }{49}  = 1}

\red{\rm :\longmapsto\:\dfrac{4 + 9 +  {k}^{2} }{49}  = 1}

\red{\rm :\longmapsto\:13 +  {k}^{2}  = 49}

\red{\rm :\longmapsto\:{k}^{2}  = 49 - 13}

\red{\rm :\longmapsto\:{k}^{2}  = 36}

\red{\rm :\longmapsto\:k  =  \pm \: 6}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

1. Direction cosines of a line is defined as cosine of the angle which a line makes with respective axis. If line makes an angle a, b and c with respective axis, then direction cosine of the line is denoted by l, m, n and is given by

\green{\rm :\longmapsto\:l = cosa}

\green{\rm :\longmapsto\:m = cosb}

\green{\rm :\longmapsto\:n = cosc}

 \blue{\rm :\longmapsto\: \: (1) \:  \:  {cos}^{2}a +  {cos}^{2}b +  {cos}^{2}c = 1}

 \blue{\rm :\longmapsto\: \: (2) \:  \:  {sin}^{2}a +  {sin}^{2}b +  {sin}^{2}c = 2}

Similar questions