Math, asked by Shiva5857, 1 year ago

If the diagonal and the area of a rectangle are 25 m and 168 m2, what is the length of the rectangle?

Answers

Answered by akc786
11
this is answer ............
Attachments:
Answered by mysticd
2

 Let \: l \:and \:b \: are \: length \:and \: breadth \\of \:a \: rectangle

 Diagonal (d) = 25 \:m \: (given)

 \implies \sqrt{l^{2} + b^{2}} = 25

/* On squaring both sides,we get */

 \implies l^{2} + b^{2}= 625 \: --(1)

 Area \: of \:the \: rectangle = 168 \:m^{2}

 \implies l \times b = 168 \: ---(2)

 \implies b = \frac{168}{l} \: ---(3)

/*Subtract bothsides of equation (1) by 2lb , we get */

 \implies l^{2} + b^{2} - 2lb = 625  - 2lb

 \implies ( l - b )^{2} = 625 - 2\times 168 \:[From \:(2) ]

 \implies ( l - b )^{2} = 625 - 336

 \implies ( l - b )^{2} = 289

 \implies l - b = \pm \sqrt{17^{2}}

 \implies l - b = 17\: --(4)

 \implies l - \frac{168}{l} = 17\: [ From \:(3)]

 \implies \frac{l^{2} - 168 }{l} = 17

 \implies l^{2} - 17l - 168 = 0

/* Splitting the middle term,we get */

 \implies l^{2} - 24l + 7l - 168 = 0

 \implies l(l - 24) + 7( l - 24 ) = 0

 \implies (l - 24)(l+7)= 0

 \implies (l - 24) = 0 \: Or \: (l+7)= 0

 \implies l = 24 \: Or \: l = -7

/* But l should not be negative */

Therefore.,

 \red { Length \:of \:the \: rectangle } \green {= 24 \:m }

•••♪

Similar questions