English, asked by WhyAlwaysMe, 10 months ago

If the diagonal of a quadrilateral bisdc each other . then prove it is a parallelogram.​

Answers

Answered by Anonymous
15

Answer:

You can reason out this result as follows :

Note that in the figure , it is given that OA=OC and OB=OD.

 \sf {so} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \triangle \: AOB \cong \:  \triangle \:COD \\  \\  \sf { \therefore} \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \triangle \: ABO \ =  \triangle \: CDO \:  \\  \\  \sf{from \: this \:  \:  \: we \: get \: } \: \: \: AB  || \: CD \\  \\  \sf{similarly \:  \:  \:  \: BC \: || \: AD} \\  \\  \sf{therefore \: ABCD \: is \: a \: parallelogram.}

Attachments:
Similar questions