If the diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of
the quadrilatual. Prove that it is a rectangle.
Answers
Answered by
0
Answer:
Let ABCD be a cyclic quadrilateral having diagonals BD and AC, intersecting each other at point O.
(Consider BD as a chord)
∠BCD + ∠BAD = 180° (Cyclic quadrilateral)
∠BCD = 180° − 90° = 90°
(Considering AC as a chord)
∠ADC + ∠ABC = 180° (Cyclic quadrilateral)
90° + ∠ABC = 180°
∠ABC = 90°
Each interior angle of a cyclic quadrilateral is of 90°. Hence, it is a rectangle.
Attachments:
Similar questions