if the diagonals of a parallelogram are equal then show that it is a rectangle???????
Answers
Answered by
5
Heya Yash is here for help you
Please mark as Brainliest answer
Let PQRS be a parallelogram. To show that PQRS is a rectangle, we have to prove that one of its interior angles is 90º.
In ΔPQR and ΔSRQ,
PQ = SR (Opposite sides of a parallelogram are equal)
QR = QR (Common)
PR = SQ (Given)
∴ ΔPQR ≅ ΔSRQ (By SSS Congruence rule)
⇒ ∠PQR = ∠SRQ
Since adjacent angles of a parallelogram are supplementary. (Consecutive interior angles)
∠PQR + ∠SRQ= 180º
⇒ ∠PQR + ∠PQR= 180º
⇒ 2∠PQR= 180º
⇒ ∠PQR = 90º
Since PQRS is a parallelogram and one of its interior angles is 90º, PQRS is a rectangle
Please follow me
Please mark as Brainliest answer
Let PQRS be a parallelogram. To show that PQRS is a rectangle, we have to prove that one of its interior angles is 90º.
In ΔPQR and ΔSRQ,
PQ = SR (Opposite sides of a parallelogram are equal)
QR = QR (Common)
PR = SQ (Given)
∴ ΔPQR ≅ ΔSRQ (By SSS Congruence rule)
⇒ ∠PQR = ∠SRQ
Since adjacent angles of a parallelogram are supplementary. (Consecutive interior angles)
∠PQR + ∠SRQ= 180º
⇒ ∠PQR + ∠PQR= 180º
⇒ 2∠PQR= 180º
⇒ ∠PQR = 90º
Since PQRS is a parallelogram and one of its interior angles is 90º, PQRS is a rectangle
Please follow me
Answered by
2
lets say, ABCD is a parallelogram
Given that the diagonals AC and BD of parallelogram ABCD are equal in length .
Consider triangles ABD and ACD.
AC = BD [Given]
AB = DC [opposite sides of a parallelogram]
AD = AD [Common side]
∴ ΔABD ≅ ΔDCA [SSS congruence criterion]
∠BAD = ∠CDA [CPCT]
∠BAD + ∠CDA = 180° [Adjacent angles of a parallelogram are supplementary.]
So, ∠BAD and ∠CDA are right angles as they are congruent and supplementary.
Therefore, parallelogram ABCD is a rectangle since a parallelogram with one right interior angle is a rectangle.
Hope it helps u
Plz mark as brainliest
Given that the diagonals AC and BD of parallelogram ABCD are equal in length .
Consider triangles ABD and ACD.
AC = BD [Given]
AB = DC [opposite sides of a parallelogram]
AD = AD [Common side]
∴ ΔABD ≅ ΔDCA [SSS congruence criterion]
∠BAD = ∠CDA [CPCT]
∠BAD + ∠CDA = 180° [Adjacent angles of a parallelogram are supplementary.]
So, ∠BAD and ∠CDA are right angles as they are congruent and supplementary.
Therefore, parallelogram ABCD is a rectangle since a parallelogram with one right interior angle is a rectangle.
Hope it helps u
Plz mark as brainliest
Similar questions