If the diagonals of a parallelogram are equal then show that it is a rectangle by linear pair
Answers
Answered by
501
lets say, ABCD is a parallelogram

Given that the diagonals AC and BD of parallelogram ABCD are equal in length .
Consider triangles ABD and ACD.
AC = BD [Given]
AB = DC [opposite sides of a parallelogram]
AD = AD [Common side]
∴ ΔABD ≅ ΔDCA [SSS congruence criterion]
∠BAD = ∠CDA [CPCT]
∠BAD + ∠CDA = 180° [Adjacent angles of a parallelogram are supplementary.]
So, ∠BAD and ∠CDA are right angles as they are congruent and supplementary.
Therefore, parallelogram ABCD is a rectangle since a parallelogram with one right interior angle is a rectangle.

Given that the diagonals AC and BD of parallelogram ABCD are equal in length .
Consider triangles ABD and ACD.
AC = BD [Given]
AB = DC [opposite sides of a parallelogram]
AD = AD [Common side]
∴ ΔABD ≅ ΔDCA [SSS congruence criterion]
∠BAD = ∠CDA [CPCT]
∠BAD + ∠CDA = 180° [Adjacent angles of a parallelogram are supplementary.]
So, ∠BAD and ∠CDA are right angles as they are congruent and supplementary.
Therefore, parallelogram ABCD is a rectangle since a parallelogram with one right interior angle is a rectangle.
Answered by
266
Answer:
Step-by-step explanation:
In parallelogjam ABCD
angle ABD = angle BDC (AC=BD (GIVEN))
angle ACD+angle BDC =180 °
2angleACD =180°
angle ACD = angle BDC = 90°
angle ACD=90°
So,Parrallelogram ABCD is a rectangle
Similar questions