Math, asked by siddhartha27, 1 year ago

If the diagonals of a parallelogram are equal, then show that it is a rectangle .

Answers

Answered by Avni2007
32
Given : A parallelogram ABCD , in which AC = BD 

TO Prove : ABCD  is a rectangle .

Proof : In △ABC and △ABD

AB = AB [common]

AC = BD [given]

BC = AD [opp . sides of a | | gm]

⇒ △ABC ≅ △BAD [ by SSS congruence axiom]

⇒ ∠ABC = △BAD [c.p.c.t.]

Also, ∠ABC + ∠BAD = 180° [co - interior angles]

⇒ ∠ABC + ∠ABC = 180° [∵ ∠ABC = ∠BAD]

⇒ 2∠ABC = 180° 

⇒ ∠ABC = 1 /2 × 180° = 90° 

Hence, parallelogram ABCD is a rectangle.   

Answered by Anonymous
1

Given: ABCD is a parallelogram and AC = BD

To prove: ABCD is a rectangle

Proof:  In  Δ ACB and ΔDCB

AB = DC _____ Opposite sides of parallelogram are equal

BC = BC _____ Common side

AC = DB _____ Given

Therefore,

Δ ACB ≅ ΔDCB by S.S.S test

Angle ABC = Angle DCB ______ C.A.C.T

Now,

AB ║ DC _______ Opposite sides of parallelogram are parallel

Therefore,

Angle B + Angle C = 180 degree (Interior angles are supplementary)

Angle B + Angle B = 180

2 Angle B  = 180 degree

Angle B = 90 degree

Similarly, we can prove that, Angle A = 90 degree, Angle C = 90 degree and Angle D = 90 degree.

Therefore, ABCD is a rectangle.

(Refer to the attachment for the figure)

Attachments:
Similar questions